J. Functional Programming 1 (1): 1-000, January 1993 © 1993 Cambridge University Press 1

Shrinking Lambda Expressions in Linear Time

Andrew W. Appel

Princeton University, Princeton, NJ 08544-2087, USA
(email: appel@princeton.edu)

Trevor Jim

University of Pennsylvania, Philadelphia, PA 19104-6389, USA
(email: tjim@saul.cis.upenn.edu)

Abstract

Functional-language compilers often perform optimizations based on beta and delta re-
duction. To avoid speculative optimizations that can blow up the code size, we might
wish to use only shrinking reduction rules guaranteed to make the program smaller: these
include dead-variable elimination, constant folding, and a restricted beta rule that inlines
only functions that are called just once.

The restricted beta rule leads to a shrinking rewrite system that has not previously been
studied. We show some efficient normalization algorithms that are immediately useful in
optimizing compilers; and we give a confluence proof for our system, showing that the
choice of normalization algorithm does not affect final code quality.

1 Introduction

The lambda calculus is a language of functions, so one of the most useful opti-
mizations we can perform in a lambda-calculus-based language is function inlining.
Inlining a function eliminates the expense of a procedure call, and instantiating the
function arguments may enable other optimizations. But indiscriminate inlining
leads to the evaluation of the entire program at compile time, which can lead to
code blowup or nonterminating compilation.

A simple solution to this problem is to inline only those functions that are used
exactly once and whose actual parameters are just atoms (variables or literals).
After the function has been inlined, its definition can be deleted, resulting in a
smaller program. It makes sense to perform this optimization in concert with other
optimizations that are guaranteed to make the code smaller, such as dead-variable
elimination, and d-reduction (the evaluation of side-effect-free primitive operators
whose arguments are constants).

All of these optimizations either depend critically on the usage counts of vari-
ables, or change the usage counts of variables, or both. Thus there is a challenge in
applying them simultaneously and efficiently. We have previously described (Appel
& Jim, 1989; Appel, 1992) the Contract phase of the Standard MT of New Jersey
compiler, which implements these optimizations by a naive algorithm. The naive

2 A. W. Appel and T. Jim

Contract is effective: it improves the speed of the generated code by a factor of 2.5
(Appel, 1992, p. 183). However, it is also expensive in terms of compile time.

In this paper, we describe simple and practical improvements to the Contract
algorithm that allow it to accomplish the same result in less time. Because our new
algorithms do their optimizing rewrites in a different order than the old algorithm,
we have also found it reassuring to prove that our rewrite system is confluent—thus,
all the algorithms produce the same output.

2 Syntax

The intermediate code of our compiler is a lambda calculus based on continuation-
passing style (CPS). A representative subset of the language is defined by the
following grammar:

M =let f(x1,...,2p) = M in N recursive function definition

| flar,...,an) function application
| let r={ay,...,a,)in M record creation
| let x = #i(a) in M record field selection

Here M and N range over terms, f, z, and r range over variables, and a ranges over
atoms. The only primitive operators we treat here are record creation and selection,
and the only atoms here are variables.

Of course, the calculus used by the compiler has more kinds of atoms (such as in-
teger constants), and many more primitive operators. But the d-rules for primitives
such as arithmetic, branching, and constructor discrimination can be implemented
in much the same way as the record primitives we discuss here. And all side ef-
fects and “observation” of side effects are restricted to particular primitives (they
are syntactically evident), so side effects do not complicate optimizations such as
dead-variable elimination. Thus our selection of primitives, while limited, suffices
to illustrate the complexities of shrinking optimizations.

The syntax of our CPS language enforces an important property: every interme-
diate value computed by a program is named in the program. In particular, the
allowable arguments of functions and primitives are severely restricted. For exam-
ple, f(AzM) is not a CPS term; anonymous (nameless) functions are prohibited,
because they compute a value (a closure). And f(g(2)) is not a CPS term, because
the value computed by g(z) is not named. The way to write such programs in our
CPS language is to first name the complex argument (AzM or g(z)), then pass the
name as the argument. Besides names, the only other permissible arguments are
literals—in other words, all arguments are atoms.

Atomic arguments simplify the task of deciding when to inline. For example,
inlining a function application f(M) in a less restricted language may not be sound,
because M may have side effects or be nonterminating; but it is always semantics-
preserving to inline a function with atomic arguments. And it is easy to calculate
the size of inlined function bodies: substituting atoms for formal parameters does
not change the size of a term.

Indeed there are several intermediate codes now in use that require function

Shrinking Lambda Expressions in Linear Time 3

arguments to be atoms: our own CPS (Appel & Jim, 1989) (but not the CPS of
Steele (1978) or Kranz (1987)); the Bform of Tarditi (1997) (but not the A-normal
form of Flanagan et al. (1993)); and the “core language” used by Peyton Jones
(1992).

The continuation-passing of our CPS language is not relevant to the shrinking
reductions we describe in this paper. For example, Tarditi defines similar reductions
in his Bform intermediate language, which is a direct-style calculus. But §-reduction
is easier to express in CPS than in Bform, and we have implemented our algorithms
in SML/NJ, which uses CPS. So CPS permits both a simpler exposition and real-
world performance evaluation.

3 Rewriting rules

A substitution is a finite mapping from variables to atoms (but not to terms in
general). A substitution may be written as {1 ~— a1,..., 2, — a,} where the z;
are distinct; we use o to range over substitutions. The application of a substitution
to a term is defined as usual (avoiding the capture of free variables), and is written
postfix (Mo or M{zy — a1,...,2, — an}). Note that if M is a term and o is a
substitution, then Me is a term of the same size as M.
A contert C[] is a “term with a hole;” C[M] indicates the term obtained by
filling the hole of C[-] with the term M possibly capturing free variables of M.
The dead-variable-elimination rules delete definitions that are not used:
(let z(z1,...,2p)=Nin M) —- M
(let z = {ay,...,an)in M) — M 5 where z is not free in M or N
(let z = #i(a)in M) — M

The record selection rule is a kind of constant-folding on field-selection expres-
sions:

<letr:<a1,...,an>)ﬁ(letr:(al,...,am)
in C[let x =#i(r) in M] in C[M{zw a;}]
For soundness, we must ensure that if the atom a; is a variable, then it is not
captured by a binding in the context C[-]; and that C[-] does not rebind r. This is
accomplished by requiring that all bound variables be distinct from each other and
from free variables. As an added benefit, this also simplifies the implementation of
substitution in our compiler.

The inlining rule replaces a function call with the body of the function:

<letf(l‘1,...,xn):M) <letf(x1,...,xn):M)
in C[f(a1a~~.;an)] - in C[M/{$1Ha1,...,$nr—)an}]

where M’ is obtained from M by renaming all bound variables to “fresh” variables.
Renaming is necessary to preserve distinct bindings.

These rules are the CPS equivalent of the (- and §-rules of the lambda cal-
culus. In principle, we could use them to do “computation” on CPS, though it is
more common to use CPS as an intermediate representation for optimization before
translation to machine language.

4 A. W. Appel and T. Jim

The demands of optimization are different from those of computation. In partic-
ular, we demand that optimization terminate. A simple way of guaranteeing termi-
nation is to use only shrinking reductions, those that make the term smaller. Clearly
the dead-variable rules and the record-selection rule are shrinking reductions. But
the inlining rule is not a shrinking reduction.

We are not willing to abandon inlining, because it is such a useful optimization.
Therefore we adopt the following shrinking inlining rule for functions called exactly

once:
.) ’ C M gy dn n ,
<1n C[f(al,,“’an)] — [{x1»—>a1 x P—)a}]

where f does not appear in C[-], M, or in {ay, ..., a,}. Shrinking inlining combines

inlining with dead-variable elimination—once the function is inlined into its single
call site, it becomes dead and its definition can be deleted. Notice that in contrast
to the general inlining rule, renaming is not required, because no duplication of the
bindings in M has occurred.

We can simplify our implementation of shrinking inlining by requiring that any
function called exactly once have its definition deleted. We do this by adding the
following recursive-dead-function rule:

(ijhuwmzcwwn~w01)%M

where f does not appear in C[-], M, or in {ay,...,a,}. Although we could have
written a more general recursive-dead-function rule (permitting f to be free in C]
or a;), these cases don’t come up much and we prefer to keep our algorithms simple.

We write M — N if N is obtained from M by transforming some subterm by
one of our shrinking reductions: dead-variable elimination, including recursive-dead-
function elimination; record selection; and shrinking inlining. We write —* for the
reflexive and transitive closure of the relation —. A term M is in shrink-normal
form if there 1s no term N such that M — N.

Our shrinking reduction system is confluent, or Church-Rosser:

Theorem (Confluence): If My —* My and My —* M,, there is some Ms such
that M1 —* M3 and M2 —* Mg.

Proof: See Appendix A.

The important consequence of confluence 1s that every CPS program has a unique
shrink-normal form. So although the three Contract algorithms we describe in this
paper apply the shrinking reductions in very different orders, the final output will be
identical. Therefore in comparing the algorithms, we only have to compare running
times, and not the programs produced by the algorithms.

We have also proved confluence for shrinking reductions on ordinary lambda
calculus—where function arguments can be terms, not just atoms (Appel & Jim,

1994).

Shrinking Lambda Expressions in Linear Time 5

Fig. 1. Gathering usage counts; use A = +1 to increment.

census (A, let f(z1,...,2n) =M in N)=
census(A, M); census(A, N)

census (A, f(ar,...,an))=
Countapp[o(f)] + Countapp[o(f)]+ A
Countesc[o(a;)] = Countesc[o(a:)] +A, 1<i<n

census (A, let r = {a1,...,ax)in M)=
Countesc[o(a;)] + Countesc[o(a;)] + A, 1<i<n
census(A, M)

census (A, let z = #i(a) in M)=
Count,pp[o(a)] + Countapplo(a)] + A
census(A, M)

4 A naive Contract algorithm

The Contract phase of our compiler does just the shrinking reductions: dead-
variable elimination, record-field selection, and inlining of functions called only
once. Because we compile ML, our optimizer can assume that programs are well
typed, so that no program applies a function to the wrong number of arguments,
or selects a nonexistent field from a record.

Redexes of the shrinking inlining rule depend on a rather global property: to
determine whether an application f(a) should be inlined requires knowing whether
f has any other uses.

Thus, contraction is implemented in two passes. The census pass (Figure 1)
gathers the usage count of each variable, and the contract pass (Figure 2) performs
the reductions.

The census and contract passes use several global mapping tables:

Bind A table mapping function variables to (argument,body) pairs, and record
variables to tuples of atoms;

o A substitution mapping variables to atoms;

Count,,, A table mapping function variables to their number of occurrences in
function-call position, and record variables to their number of occurrences in
selected-from position.

Counte,. A table mapping variables to their number of occurrences as record fields
or function arguments.

The contraction of a redex often produces new redexes. For example, our record
selection rule removes a reference to a record, which may then become a candidate
for dead-variable elimination. This sort of dependency makes it difficult to perform
all contractions in one pass.

In fact, if we consider a “pass” over an expression tree as “down to the leaves
and then back up to the root,” it is provably impossible to produce a shrink-normal
form in one down-and-up pass (Appel, 1992, pp. 78-80), or any constant number

6 A. W. Appel and T. Jim

Fig. 2. Performing reductions (old algorithm).

contract (let f(z1,...,2n) =M in N)=
Bind[f] « ((z1,...,2zn), M)
if Countapp[f] <1 and Countesc[f] = 0
then contract(N)
else let f(z1,...,2,) = contract(M) in contract(N)

contract (f(ai,...,an))=
if Countapplo(f)] =1 and Countesc[o(f)] =0
and Bind[o(f)] = ((z1,...,2zn), M)
then o « o 4+ {1 — o(a1),...,2n = o(an)}; contract(M)
)

else o(f)(o(ar),...,o(an)

contract (let r = {ai1,...,a,)in N)=
Bind[r] « (a1,...,an)
if Countesc[r] =0
then contract(N)
else let r = (o(a1),...,0(axn)) in contract(N)

contract (let x = #i(a) in N) =
if Countapp[z] + Countesc[z] = 0
then contract(N)
else if Bind[o(a)] = (b1,...,bn)
then o + o + {z — o(b;)}; contract(N)
else let © = #i(o(a)) in contract(N)

of such passes (see section 6). At most we will need a linear number of passes, since
each pass removes at least one node from the expression tree.

We were led astray by this theorem. We reasoned that if a bounded number of
passes could not do the job, then several passes are necessary; and thus any reason-
able multi-pass algorithm would suffice. Therefore we used the following strategy
in our code optimizer:

repeat
Initialize o, Bind, Countapp, and Countege, to empty.
Gather usage counts (census).
Perform contractions based on usage counts (contract).
until no redexes left.

The Glasgow Haskell optimizer uses the same methodology, described by Santos
(1995) as “Analyse—Simplify—Tterate.”

As contractions were done, we did not update the usage counts to reflect the
changed program. Since usage counts can increase (by shrinking inlining or record
selection) as well as decrease (by any shrinking rule), this might seem dangerous.
But the two rules that depend on usage counts are dead-variable elimination and
shrinking inlining. The usage count of a dead variable can never increase, so dead-
variable elimination is safe with nonupdated usage counts; and if Counteg.[f] = 0
then Countapp[f] can only decrease, so shrinking inlining is safe with nonupdated
usage counts.

Shrinking Lambda Expressions in Linear Time 7

The real problem is that the algorithm iterates too many times before reaching
shrink-normal form. In practice the last several iterations of the algorithm contract
very few redexes, so we adjusted the algorithm to be

repeat
Initialize o, Bind, Countapp, and Countege, to empty.
Gather usage counts (census).
Perform contractions based on usage counts (contract).
until only a dozen contractions done in this round.

This loop was a major part of Standard ML of New Jersey’s optimizer, up to
SML/NJ version 0.96. But as we will show in this paper, keeping the usage counts
current 1s easy and practical, and greatly improves the speed of the compiler.

5 A better Contract

We have recently improved the Contract phase to be a quasi-one-pass algorithm.
We do this by recording the effect of each optimization on usage counts, and by
changing the order in which optimizations are applied. As a result we contract the
vast majority of redexes in one pass, resulting in a program with very few shrinking
redexes. Our New Contract algorithm uses ncontract (Figure 3) in place of contract,
but with the same census function of Figure 1.

The first improvement is to carefully maintain usage counts. For example,

¢ In dead-variable elimination: if let f(z) = M is deleted because f is a dead
variable, the usage counts of the free variables of M are decremented.

e In é-reduction: when we replace

let r = (@)
in C[let x = #i(r) in M]

by let r = (@) in C[M{z — a;}], we decrement the count of » and adjust
the count of a; according to how many times z appears in M.

¢ In shrinking inlining: a definition let f(#) = M is removed and an occurrence
(@) is replaced by M{# — a}; so the usage count of each a; is adjusted
according to how many times z; is used in M.

Previously, we had not adjusted usage counts while doing reductions. Typically,
Contract would overestimate usage counts, thereby doing fewer inlinings and dead-
variable eliminations than it otherwise could have.

The second improvement concerns the order in which we perform dead-variable
elimination. The “old” Contract, encountering an expression such as

let » ={ay,...,a,) in M

during its recursive descent, checks whether r is dead before processing M. We
can achieve better results by performing dead-variable elimination both before and
after processing M.

8 A. W. Appel and T. Jim

e We remove a dead r before processing M because 1t decrements the usage
counts of the a;. This can enable other optimizations; for example, if an a; 1s
a function called only from M, its usage count decreases and we may be able
to inline the function.

e A reference to r may occur in M, but be removed during the processing of M.
Thus the earliest we can remove r 1s after processing M. Removing r may
now cause one of the a; to become dead, cascading this optimization on the
way up. It turns out to be quite common to have long chains of variables that
can be removed going up.

Our adjustment of usage counts forces us to handle recursive-dead-function and
shrinking-inlining redexes more carefully. Consider a definition let f(#) = M in N
where Countapp[f] = 1 and Countes.[f] = 0. This is either a recursive-dead-function
or shrinking-inlining redex; it doesn’t matter to the old Contract, which simply
discards M and recurses on N. But the new Contract must distinguish the two cases:
if fis a dead function, the usage counts of variables in M must be decremented,
while if f is inlined, they should not be decremented.

The way we tell the difference is by recurring on N, and arranging for Bind[f] to
be set to a special token, inlined, if f is inlined. Upon return, Bind[f] is examined
and census(—1, M) called if it is not inlined. In either case, M is discarded as in
the old Contract.

Finally, consider let f(Z) = M in N where Countapy,[f] > 1 or Countesc[f] > 0.
There is no recursive-dead-function or shrinking-inlining redex. But it could be that
during ncontract(N), the counts of f decrease because of other reductions. So when
ncontract(N) returns, we check for three cases:

¢ Bind[f] = inlined, meaning that during ncontract(N) the counts of f de-
creased and then f(@) was found and was replaced by M{xz; — a;}. We must
now remove f(Z) = M without adjusting the counts of variables in M.

¢ Bind[f] # inlined, but the counts of f are now zero. We can delete f(Z) = M
and perform census(—1, M).

¢ Bind[f] # inlined, and f still has occurrences. We now perform ncontract (M);
but any occurrence of f(a@) that we might find within A must not be inlined,
because it is a recursive call. To disable inlining of f we set Bind[f] « ()
before calling ncontract(M).

Because ncontract adjusts usage counts and performs dead-variable elimination
both before and after each recursive call, for some inputs the number of passes
required by the new Contract to reach shrink-normal form is a factor of N better
than that of the old Contract, where N is the input size.

Figure 4 shows an example of how ncontract finds more redexes in one pass. In
a compilation of the SML-Lex lexical analyzer generator, the old Contract (solid
circles) reduces 1839 redexes in the first pass, 722 redexes in the second pass, 85
in the third, and so on. The new Contract (white circles) reduces 2621 in the first
pass, so that only 43 are left for all remaining passes. Although we have not reduced
all the redexes in just one pass, there are so few remaining that a second pass is
not justified by the expected return.

ncontract

ncontract

ncontract

ncontract

Shrinking Lambda Expressions in Linear Time

Fig. 3. Performing reductions (new algorithm).

(let f(z1,...,2p)=Min N)=

Bind[f] + ((z1,...,22), M)

if Countapp[f] =0 and Countesc[f] =0

then census(—1, M); ncontract(N)

else if Countapp[f] =1 and Countesc[f] = 0

then N’ « ncontract(N)
if Bind[f] # inlined then census(—1, M)
N/

else N' < ncontract(N)
if Bind[f] = inlined then N’
else if Countapp[f] = 0 and Countesc[f] = 0
then census(—1,M); N’
else Bind[f] + ()
let f(x1,...,7,) = ncontract(M) in N’

(flar,...,an)) =
if Countapp[a(f)] =1 and Countesc[o(f)] =0
and Bind[o(f)] = ((z1,...,2zn), M)
then 0 « o+ {z1 =~ o(a1),...,zn = olan)}
Count,pp[o(ai)] + Countapp[o(ai)] + Countapp[z:] — 1,
Count,pp[o(f)] + 0
Bind[o(f)] + inlined
ncontract (M)
else o(f)(o(ar),...,o(an))

(let r={ai,...,an) in N)=
Bind[r] «+ (ai1,...,an)
if Countapp[r] =0 and Countesc[r] =0
then Countesc[o(a;)] ¢ Countesc[o(ai)] — 1, 1<1<n
ncontract (N)
else N' < ncontract(N)
if Countapp[r] = 0 and Countesc[r] =0
then Countesc[a;] ¢+ Countesc[a;] — 1, 1<1<n
N/
else let r = {o(a1),...,0(an)) in N’

(let z=#i(a)in N) =
if Countapp[r] =0 and Countesc[z] =0
then Countapp[o(a)] ¢+ Countapp[o(a)] —1; ncontract(NV)
else if Bind[o(a)] = (b1,...,bn)
then 6 « o + {z — a(b;)}
Count,pp[o(bi)] « Countapp[o(bi)] + Countapp[z]
Countesc[o(bi)] ¢+ Countesc[o(bi)] + Countesc[z]
Count,pp[o(a)] + Countapplo(a)] — 1
ncontract (N)
else N’ « ncontract(N)
if Countapp[r] + Countesc[z] =0
then Count,pp[o(a)] « Countapplo(a)] — 1
N/

else let » = #i(o(a)) in N’

1<i<n

10 A. W. Appel and T. Jim

Fig. 4. Cumulative reductions after each round

2800 L.
2400
13 2000 - o New
d
¢ 16007 ¢ Old
£ 1200 A
0
n 800
s
400
0 T T T T T T T 1
o 1 2 3 4 5 6 7 8
Rounds of contraction
Table 1. Compile-time improvement.
Compile Time Run Time
Program New/Old
old % New % Ratio Old New
Barnes-Hut 57.9 26 54.9 21 0.95 30.57 29.31
Boyer 25.1 20 24.7 22 0.98 2.72 2.76
CMI.-sieve 37.6 42 33.1 30 0.88 34.58 32.91
Knuth-B. 23.7 47 19.1 33 0.81 7.56 7.30
Lex 41.8 44 359 34 0.86 10.45 10.48
Life 7.2 50 6.3 28 0.88 1.46 1.42
Mandelbrot 0.54 13 0.51 11 0.94 17.52 16.97
Yacc 157.3 36 132.8 23 0.84 4.39 4.27
Ray 17.3 36 15.5 16 0.89 23.53 22.75
Simple 82.2 57 63.6 40 0.77 15.53 16.26
VLIW 236.6 50 183.9 33 0.78 13.69 13.10
Average 0.87

Total compile time, percentage of compile time taken by optimization, and execution
time are shown for each benchmark under “old” (multi-pass contract) and “new” (one-
pass contract) compilers. The optimizations are Contract as well as eta-reduction and
speculative inlining (Appel, 1992, Ch. 6 & 7).

Table 1 shows that using the new Contract, all of the benchmark programs (from
the benchmark set used by Shao and Appel (1994)) are compiled faster, by an
average of 13%.

The quality of the code generated by the new Contract seems to be just as good
as that of the code generated by the old Contract: execution time decreases by
1.8% 4 2.8%—the average decrease in execution time is less than the variance. This
is as expected: the new algorithm typically contracts as many redexes in its one
round as the old algorithm contracts in three.

Why is there any change in execution time at all? Neither algorithm reduces
programs completely to shrink-normal form (because the required extra rounds of
Contract would be too expensive (Appel, 1992, p. 192)); each leaves a (slightly
different) set of residuals.

Shrinking Lambda Expressions in Linear Time 11

6 Asymptotic complexity of Contract

Both the old and the new Contract algorithms reduce expressions to shrink-normal
form in worst case time complexity O(N?).

The upper bound is easily established by considering separately the cost of finding
redexes and the cost of performing contractions. We find a redex by making a down-
and-up pass over the expression tree. Each pass takes time ©(N) and finds at least
one redex (if shrink-normal form has not yet been reached). Contracting a redex
malkes the graph smaller, so there are at most N contractions, and therefore at most
N passes. This gives an upper bound of O(N?) on the time spent finding redexes.
The cost of performing a contraction (substitution and updating usage counts) is
at worst O(N'), and there are at most N contractions to perform, so the total cost
of performing contractions is O(N?). The cost of the algorithm as a whole is the
sum of these costs, or O(N?).

A simple example demonstrates the Q(N?) behavior:

let fi(xz1,y1,21) = h(z1)
fa(za, y2, 20) = h(22)

In(zn,yn, 2n) = h(zn)

()
92() = filg, f2, f3)
() = f2(g2, f3, f4)

gn() = fnv-a(gnv-a, v, @)
in h(gn)

In the ith pass of the new Contract, the body of f; is inlined in the application
fi(gi, fix1, fig2) because the usage count of f; is 1. On the ith upward pass, function
gi 18 deleted because it is a dead variable, reducing the usage count of fiy; to 1.
Thus N passes are required to reach shrink-normal form, each taking linear time,
giving Q(N?) as the lower bound.

This pathological case cannot be typical, given the data in Figure 4. A much
more typical case, on which the old Contract took N passes and the new Contract
takes one pass, is:

let ri = (x,2)

re = (ry, x)

rN = <7°N_1, l‘>
in h(x)
7 A linear-time Contract

We also have an algorithm that reduces expressions to shrink-normal form in linear
time, in the worst case. The idea is to represent a program as a doubly linked tree

12 A. W. Appel and T. Jim

of nodes, and maintain a doubly linked list of the occurrences of each variable. The
use of in-place updating allows us to contract redexes in any order, freeing us from
the restrictions of the down-and-up passes of Contract.

We have not implemented this algorithm. It spends all its time doing in-place
updates of doubly linked lists and of expression tree nodes. This style of program-
ming, while implementable straightforwardly in ML using ref variables, does not
mesh well with the rest of our compiler. There is a significant advantage, in ease of
correct implementation and readability, in a style of optimization that uses rewrit-
ing by structural induction. The new Contract described in this paper is easily
implemented in such a style; the linear-time algorithm is not. But there are im-
plementation styles in which doubly linked lists are natural, and our algorithm
establishes the exact complexity of the problem.

Formally, programs are represented as expression trees. We use D, E, F,... to
range over expressions, which are the nodes of the trees. We use v, w, z, ... to range
over binding occurrences of variables, and a, b, ¢, . . . to range over nonbinding occur-
rences of variables. Binding occurrences of variables will be called simply variables,
while nonbinding occurrences will be called occurrences.

We navigate the expression tree via the following functions:

var maps each occurrence to its binding variable;

occe maps each variable to its set of occurrences (represented as a doubly linked
list);

def maps each variable to the expression that binds it; and

site maps each occurrence to the smallest expression containing the occurrence
(recall that an occurrence is not an expression).

rec indicates, for each occurrence ¢, whether it is a recursive occurrence. In the
term Cllet f(x) = N in M], the occurrences of f within N are recursive and
the occurrences of f in M are not recursive.

For example, the program fragment

let v = (q,7)
in let w=#1(v)
in wv,r)

is represented by the following expression tree fragment:
D = letv=/{a,b)in E,

E = letw=#I1(c) in F,
F = d(e,f),

Shrinking Lambda Expressions in Linear Time 13

where
var(a) = q,
var(b) = var(f) = r,
var(c) = var(e) = v,
var(d) = w,
oce(v) = {ec, e},
oce(w) = {d},
def(v) = site(a) = site(h) = D,
def(w) = site(c) = E,

Our example program fragment contains a J-redex that can be reduced by: (1)
deleting the definition of w; and (2) substituting ¢ for w. The reduction can be
carried out in the expression tree by: (1) updating F to F in D; and (2) updating
the set of occurrences of ¢, by

occ(var(a)) := occ(var(a)) Uocc(w).

(Recall that ¢ = var(a)).

This update can be performed in constant time, even if var(a) is not known. The
occurrence a 1s part of the doubly linked occurrence list of some unique variable,
in this case, ¢. We can splice the doubly linked list oce(w) next to a inside oce(q),
all without knowing q.

The reason we might not know var(a) is that it is too expensive, in general, to
update the var function to maintain the invariant g € occ(z) iff var(g) = z, for
any occurrence ¢ and variable z. In our update above, for example, it would require
visiting all the elements of occ(w); and we might have to perform var updates
many times for a single occurrence. We describe below how we obtain var when
necessary while staying within our linear time bound.

Figure 6 shows the algorithm. The algorithm maintains a set of redexes, each of
which has one of the following forms:

inline(v) marks a function bound to v that can be inlined;

dead(v) marks a variable v that has no occurrences (and is therefore a dead
variable), or that has only a recursive occurrence (and is therefore a recursive
dead function); and

select(a) marks an occurrence a of a record which is being selected.

The initial redex set is obtained by the same census function used by all our Con-
tract algorithms, modified to mark recursive occurrences as rec. Redexes in the set
may be removed and reduced in any order, and reduction may add newly discovered
redexes to the set.

Much of the work is done by the two auxiliary functions, delete and subst.
Delete(a) removes a from the occurrence list of var(a). This can be done in con-
stant time, just as for the update above. Deleting an occurrence can create new
dead-variable or function inlining redexes, so delete also checks for this. This in-
volves testing the cardinality of occurrence sets; but we only need to know whether
the cardinality is zero, one, or greater than one. This test can be done in constant

14 A. W. Appel and T. Jim

Fig. 5. Auxiliary functions for the linear-time algorithm.

delete(a) =
; remove a from occurrence list
oce(var(a)) := occ(var(a)) — {a}
; check for new redexes
if |oce(var(a))| <1
compute v = var(a)
if Joce(v)| =0
add dead(v) to redex set
if occ(v) = {c},
and site(c) is ¢(cj),
and def(v) is let v(w;) = E in F
if rec(c)
add dead(v) to redex set
else add inline(v) to redex set

subst(w,a) =
; check for new record redexes
if rec(a) ; a is a recursive occurrence
for each b in occ(w)
rec(b) := true
if var(a) defined ; a is a record
for each b in occ(w)
var(b) := var(a) ; var update
if site(b) is let z = #i(b) in D
add select(b) to redex set
; perform substitution
occ(var(a)) := oce(var(a)) U occ(w)

Fig. 6. The linear-time Contract algorithm.

while redex set is not empty

remove r from redex set

case r of

dead(v) :

if def(v)is D is let v(w;) = E in F
splice F'in place of D in expression tree
for each occurrence a in F
delete(a)
if def(v)is Dislet v =(b1,...,bs) In E
splice F in place of D in expression tree
for1<i<n
delete(b;)

inline(v) :

def(v) is D is let v(wy,...
oce(v) is {a}
site(a) is G is a(by,...,bk)
splice F'in place of D in expression tree
splice F in place of G in expression tree
for 1 <:<k

subst(w;, b;)

delete(b;)

,wk):EinF

select(a) :

;a 18 a record, so var(a) is defined

var(a) is v

def(v) is let v = (by,...,by) in D

site(a) is E is let z = #i(a) in F

splice F'in place of F in the expression tree
subst(z,b;)

delete(a)

Shrinking Lambda Expressions in Linear Time 15

time on doubly linked lists. Delete also computes var(a), but only when the occur-
rence list has length 1 or less. If we give each occurrence list a “header” node that
indicates the var value, we can compute var from an occurrence just by searching
down the list. When the list is of length 1 this takes constant time. Thus delete as
a whole is a constant time operation.

Subst(w, a) substitutes var(a) for w by updating the occurrence list of var(a),
as described above. Subst can create new select redexes: var(a) may be bound to
a record, and some occurrence b of w may be selected from. When we later need
to reduce the redex select(b), we will have to compute var(b). In this case, b may
be only one of many occurrences of the record variable, so that we cannot use the
trick of searching down the occurrence list for the header node. Instead, we will
faithfully maintain var for every occurrence of a record. This means updating var
for an occurrence in subst when splicing it into the occurrence list of a record.
Once an occurrence is bound to a record, it can never be rebound; so a var update
will be performed at most once per occurrence. Thus the total cost of maintaining
var for records is at most O(N).

Similarly, we propagate the rec property as occurrences are substituted. Consider
a term C[let v(z) = N in M], where the occurrences of v within N are marked
rec and the occurrences within M are unmarked. When we perform a reduction
within N or M, this may create more occurrences of v; for example, N or M might

be
Ci[let r = {(¢,) in Cy[let w = #1(r) in K]]

where ¢, is an occurrence of v, and K contains occurrences ¢; of w that now become
occurrences of v. If » = {¢,) was within N, then ¢, would have been marked rec
and subst(w, ¢,) will mark all the e; rec; and if r = {¢,) was within M, then ¢,
would not have been rec and the e; will stay non-rec. An occurrence acquires the
rec property at most once, so the total cost of rec propagation is linear.

We can now analyze the total running time of the algorithm. It is the sum of the
times needed to reduce each redex.

To reduce a redex dead(v), we must first remove its defining expression from
the expression tree, which takes constant time. We must also traverse the definition
of v, removing each occurrence in the definition from its occurrence list. Traversing
a dead definition takes time linear in the size of the definition. But we can delete any
given definition or occurrence only once; so over a complete run of the algorithm,
the total time spent reducing dead-variable redexes is O(N).

Reducing a redex inline(v) involves deleting a call expression a(by, ..., by) from
the expression tree (constant time), and performing k substitutions and deletions.
But any call can be inlined at most once; so the total time spent on inlining is
O(N), plus the cost of the var updates performed by subst.

The reduction of a redex select(a) involves one substitution and one deletion,
and at most O(N) select redexes can be reduced by the program. Thus the total
time spent on select redexes is O(N), plus the cost of the var updates performed
by subst.

We have already seen that the total cost of var updates is O(N), and so the

16 A. W. Appel and T. Jim

algorithm runs in worst-case linear time. Since it is trivial to construct an example
with ¢ - N redexes, the time complexity is O(N).

8 Eta-reduction

In our intermediate language, eta-reduction is the “copy propagation” of function
definitions. A definition of the form

let f(z1,...,20) = g(x1,...,20)

simply assigns a new name f to the function g; we can remove the definition of f, and
use g for f in the rest of the program—provided that ¢ € {f, @1, ..., 2,}. The result
is a smaller program, and thus we consider eta-reduction a shrinking reduction. Eta
redexes can be introduced by the programmer, but are more commonly introduced
by code transformations performed by the compiler.

Contracting an eta redex can create further redexes:

let f(xz) =1et g(y) = h(y)
in g(x)
in ...
Here we can reduce one eta redex, removing the definition of ¢ and using h instead;
this produces a new redex, f(z) = h(z).

In contrast with the Contract phase, however, our Eta phase can produce an
eta-normal form in at most two passes. In the first pass, we maintain a renaming
map, and traverse the expression from root to leaves and back. When we reach a
function definition f(z1,...,2,) = M, we first reduce M, obtaining M'. If M’ is
of the form g(x1,...,2,), we have found an eta redex, so we remove the definition
for f and record that we should use g in place of f in the renaming map.

This strategy can fail to produce an eta-normal form in some cases involving
mutually recursive functions, for example:

let f(z1,...,20) =M
and g(y1,...,yn) = f(y1,-- -, Un)
in N.
Here we first traverse M, obtaining M’; then remove the definition of ¢; and finally
traverse N, renaming ¢ to f. However, g may still appear in M’; we may need to
traverse M’, renaming g to f.

This seems to be a pathological special case, so our strategy is to defer the
traversal of any such M’ to a second pass (this also avoids a possible quadratic
blowup in execution time). In compiling the 75,000-line SML/NJ compiler, the
second pass of Fta is never invoked.

Our original implementation combined the Fta and Contract phases. But our
current implementation keeps the phases separate, for two reasons.

First, we alternate Contract with other optimization passes that do speculative
inlining and loop-invariant analysis; we iterate this alternation several times. But
none of these optimizations introduce new eta redexes; so 1t suffices to do Fta just
once, before the other optimizations.

Shrinking Lambda Expressions in Linear Time 17

Second, combining Eta and Contract results in a nonconfluent system. For ex-
ample, the program

let f(x) =M
in let h(y) =N
in let g(z) = f(2)
in h(g)

rewrites by inlining f to

let h(y) = N
in let g(z) = M{z — z}
in h(g)

and by n-reducing ¢ to

let f(x) =M
in let h(y) =N
in A(f).
No sequence of reductions can join the two.
The failure of confluence results in a system that is harder to analyze and debug;

indeed, our combined Contract-Fta was never free of bugs, and was discarded several
years ago.

9 Further work

It should be possible to formally relate each of our three algorithms to the rewriting
system, and therefore to prove the algorithms correct. This will probably be easier
for the linear time algorithm (which performs one reduction at a time) than for the
tree-walk algorithms (which perform reductions incrementally).

10 Conclusion

Our improvements to the Contract phase of Standard ML of New Jersey yield an
algorithm that reduces “almost all” shrink redexes in linear time. Our improved
Eta phases reduces all eta redexes in linear time. The algorithms that they replace
both took worst-case quadratic time. The new algorithms allow us to greatly re-
duce the number of Contract and Eta passes performed by the compiler, without
compromising the speed of the generated code. Furthermore, our rewriting system
is confluent (Church-Rosser), so the optimizations are nicely deterministic.

References

Appel, Andrew W. (1992). Compiling with continuations. Cambridge University Press.

Appel, Andrew W., & Jim, Trevor. (1989). Continuation-passing, closure-passing style.
Pages 293-302 of: Conference record of the sizteenth annual ACM symposium on prin-
ciples of programming languages.

18 A. W. Appel and T. Jim

Appel, Andrew W., & Jim, Trevor. 1994 (November). Making lambda calculus smaller,
faster. Tech. rept. CS—TR-477-94. Princeton University.

Barendregt, Henk. (1984). The lambda calculus: Its syntax and semantics (revised edition).
Studies in Logic and the Foundation of Mathematics, vol. 103. North-Holland.

Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., & Felleisen, Matthias. (1993). The
essence of compiling with continuations. Pages 237-247 of: Proceedings of the ACM
SIGPLAN ’93 conference on programming language design and implementation.

Kranz, David. (1987). ORBIT: An optimizing compiler for Scheme. Ph.D. thesis, Yale
University, New Haven, CT.

Peyton Jones, Simon L. (1992). Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine. Journal of functional programming, 2, 126-202.

Santos, André Lufs de Medeiros. (1995). Compilation by transformation in non-strict
functional languages. Ph.D. thesis, University of Glasgow, Glasgow, Scotland.

Shao, Zhong, & Appel, Andrew W. (1994). Space-efficient closure representations. Pages
150-161 of: Proceedings of the 1994 ACM conference on Lisp and functional program-
ming.

Steele, Guy L. 1978 (May). RABBIT: A compiler for SCHEME. Tech. rept. AI-TR-474.
Artificial Intelligence Laboratory, M.I.T.

Tarditi, David. (1997). Optimizing ML. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA. Expected 1997.

Shrinking Lambda Expressions in Linear Time 19

A Proof of Confluence

We now prove confluence for a class of untyped term rewriting systems that gener-
alizes the shrinking rewrite system of Section 3. Confluence 1s typically achieved by
imposing some syntactic restrictions on the form of rules used to define the system.
However, it is difficult to formulate a simple set of restrictions on rules that permit
all of the rules we have in mind; and not all rewriting systems are defined by rules.
Therefore, we will instead specify properties that the rewriting relation as a whole
must satisfy in order to guarantee confluence.
The main results can be stated as follows.

Definition: A rewriting relation is a shrinking rewriting relation if it is substitutive,
compatible, includes shrinking inlining, dead-function elimination, recursive-dead-
function elimination, and satisfies Properties 1-5 below.

Confluence follows from the following stronger result. Let —, be the reflexive
(but not transitive) closure of =, so M —. M’ it M — M’ or M = M".

Theorem (Diamond Property): Suppose — is a shrinking rewriting relation. If
My =+ M1 and Mo — M>, there 1s some Mz such that My — M3 and My — Ms.

Theorem: The rewriting relation of Section 3 is a shrinking rewriting relation, and
therefore, confluent.

We now develop the necessary technical machinery for the proof of the Diamond
Property. As we introduce each of the Properties 1-5, we will show that the system
of Section 3 satisfies it.

We fix a set of constants, ranged over by §. Typical §’s include record selection
and creation operators, numerals and arithmetic functions, etc. The CPS terms are
generated by the following grammar.

M =let f(x1,...,2p) = M in N recursive function definition
| flai,...,an) function application
| let x1,...,2, =d(a1,...,am) in M primitive operation

Note that we allow primitive operations to return more than one result. For
example, we might want

(let quot,rem = 9 =2 in N) — N{quot — 4, rem — 1}.

We use some standard concepts (free and bound variables, occurrences, sub-
terms, etc.) without formal definition; the interested reader may consult Barendregt
(1984). We write fv(M) for the free variables of M, and M C N to indicate that
M is a subterm of N. We consider terms to be equal modulo renaming of bound
variables. We have already mentioned that we require, in any mathematical con-
text, that all bound variables be distinct from each other and from free variables;
this is a standard requirement, sometimes called the Variable Convention.

We informally introduced the concept of a syntactic context as a “term with a

20 A. W. Appel and T. Jim

hole.” We formalize that idea by the following grammar.

[

let f(z1,...,2,) =C[]in M

let f(z1,...,2,) = M in C]]

let z1,...,2, = d(a1,...,am) in C[]

If C[] is a context, then C[M] is the term obtained by replacing the hole of CT]
by M, possibly capturing free variables of M; we omit a formal definition. Note
that an atom a is not a CPS term, so Cla] is not well defined.

In our proof we will need contexts with more than one distinct hole. For example,

C[]l[]2 = let f(l‘l, ey l‘n) = []1 in []2

is a context with two distinct holes, which may be filled with two different terms,
as in

C[M11[N]a =1et f(z1,...,20) = M in N.
We sometimes abbreviate C[-]i[-]2 by C[][-]. See Barendregt (1984, §14.4) for a
formal definition of this sort of context.

A (term) rewriting relation is a binary relation on terms. A rewriting relation R
is compatible if whenever (M, N) € R, then (C[M],C[N]) € R for every context
C[]- The compatible closure of a rewriting relation R is the least compatible relation
containing R. The kernel of a compatible rewriting relation R is the least relation
whose compatible closure is R. Tf (A, A’} is in the kernel of R then A is called a
reder and A’ a contractum (of A). If — is a compatible rewriting relation, we write
M B M’ to indicate that M rewrites to M’ by contracting redex A, that is, we
have M = C[A] and M’ = C[A'] for some context C[-] and contractum A’ of A.

The domain of a substitution {Z — @} consists of the variables #, and its range
consists of the atoms d. A substitution ¢ may be applied to: an atom a yielding an
atom ac; a sequence of atoms @ yielding a sequence of atoms do; a term M yielding
a term Mo; or a context C[-] yielding a context (C'o)[-]. A rewriting relation R is
substitutive if whenever (A, A’) € R, then (Ao, A'c) € R for any substitution o.

Two standard results about substitutions will be useful.

Lemma 1
Tf no variable in the domain or range of ¢ is bound in C[], then

(C[M])o = (Co)[Mo]
for any term M.

Lemma 2
If no variable of Z appears in the domain or range of o, then

(M{#— d})o = (Mo){#— do}
for any term M and atoms d.

We now develop the Properties needed for confluence. Our first Property says that
every reduction deletes a definition, and that reduction is invariant with respect to

Shrinking Lambda Expressions in Linear Time 21

certain changes in the syntax of terms. In stating the Property, we use D to range
over definitions (f(#) = M or & = §(d@)), and we say f(Z) = M defines the variables
{f}, and & = §(d) defines the variables {Z}.

Property 1
A rewriting relation — satisfies Property 1 if, whenever M A M’ and A is not a
shrinking inlining redex, there exist a substitution ¢, a unique context C[], and a
unique term (let D in N) such that

M=C[let Din N]3 C[No]=M'

bl

the domain of & contains only variables defined by D, and C[let D in N’ | —
C[N'c] for any term N’ that contains no more variables defined by D than N.

The term (let D in N) in Property 1 will be called the focus of the redex A,
and No will be called the focal replacement of A. For example, in the system of
Section 3, we have the following focuses and focal replacements.

o If A is a dead-variable-elimination redex (let D in N), the focus of A is A
and the focal replacement of A is N. Note, here we may take the substitution
o to be the empty (identity) substitution.

o If A'is a record selection redex (let » = (@) in C[let = #i(r) in N]), the
focus of A is the subterm (let # = #i(r) in N) and the focal replacement of
Ais N{z — a;}.

It will be useful to extend this terminology to shrinking inlining redexes.

o If A is a shrinking inlining redex (let f(Z) = N in C[f(@)]), the focus of A
is A, and the focal replacement of A is C[N{Z— d}].

Intuitively, the first part of Property 1 says that every rewrite rule of the system
deletes a definition, and the focus of a redex is defined to be the smallest subterm
containing the deleted definition. When a redex is contracted, only the focus is
affected; the portion of the term outside of the focus is unchanged. Usually the
focus of the redex is the redex itself, and the focal replacement is the contractum
of the redex; but not always, as in the case of record selection.

To verify the second part of Property 1 for the system of Section 3, we consider
two cases.

e If C[let D in N] = C[N] by dead-variable elimination, then N contains no
variables defined by D. And Clet D in N’ | — C[N’] for any N’ containing
no variables defined by D.

o If Cllet x = #i(r) in N] = C[N{x — a;}] by record selection, then
Cllet # = #i(r) in N’] > C[N'{x — a;}] for any N’, regardless of the
variables it contains.

The next Property concerns the reduction of a redex properly containing its focus,
e.g., record selection. Like Property 1, it states that such reductions are invariant
under certain syntactic modifications to terms.

In a term (let D in N), we call the definition D the head and N the body. We say

22 A. W. Appel and T. Jim

a definition is dominant in a context if its scope includes the hole of the context.
Note that if A is a redex with focus F' Z A in term C[F], then the head of A is
dominant in C[].

Property 2
A rewriting relation — satisfies Property 2 if, whenever A is a redex with focus
F # A and focal replacement F”, then

Cil(Co[F o] = Ch[(Co[F'])o]

for any Ci[-], Cs[], and o such that the head of A is dominant in C1[-], and the
domain of ¢ includes no variable appearing in C1[].

For the system of Section 3, the only case in which F' # A is when A is a record
selection redex. In this case, C1[-], F, and F’ have the following forms:

Ci[] = Cllet r={a@) in C'[]],
F = let z=4#i(r)in N,
F' = N{zw a},

and we want to verify that
Ci[(Collet x = #i(r) in N J)o] = C1[(Ca[N{z — a;} |)o].

We assume that @ does not appear in ¢ (else rename z). Then since r is not in the
domain of o, we have (let x = #i(r) in N)o = (let = #i(r) in (No)). And since
a; is not in the domain of ¢, by Lemma 2 we have (N{z — a;})o = (No){z — a;}.
This is enough to verify the reduction.

The following lemma summarizes an important special case of Property 2.

Lemma 3
Suppose — satisfies Property 2, and A is a redex with focus F' £ A and focal
replacement F'. Then C[F] — C[F’] for any context C[-] in which the head of A is

dominant.

Because of the shrinking inlining and dead-function rules, we must keep track
of the number of occurrences in function position of a variable during the course
of a reduction (e.g., in the term f(a), f is in function position and a is not). The
next property gives conditions guaranteeing that occurrences in function position
decrease. It holds for our shrinking rewrite system, but not for rewrite systems in
general; for example, it fails under the unrestricted inlining rule.

Property 3

A rewriting relation — satisfies Property 3 if, whenever a variable f has n occur-
rences in function position in a term M, and no other occurrences, and M — M’
then f has n or less occurrences in function position in M’, and no other occur-

rences.

Our final two properties concern overlaps, which can be particularly troublesome
in proving confluence. The first property states that when overlaps occur, they do
so in a harmless manner. The second states that a harmful kind of overlap does not

Shrinking Lambda Expressions in Linear Time 23

occur. In practice, these two properties are the most difficult to prove of a rewrite
system, because the number of cases to consider is quadratic in the number of rules.

Property 4

A rewriting relation — satisfies Property 4 if, whenever two redexes have the same
focus, then they have the same focal replacement. So, if A; and A; have the same
focus, M A—J} My, and M A—§ My, then My = M.

For the system of Section 3, a case analysis shows that if two distinct redexes
have the same focus, then one redex is a record selection redex

Ay =let r = (@) in C[let z = #i(r) in N |,
and the other redex i1s a dead-variable-elimination redex
Ay = (let 2 = #i(r) in N).

That is, Ay 1s the focus of Ay. Since z does not appear in N, the focal replacement,
N{z + a;}, of Ay is the same as the focal replacement, N, of As, as desired.

Property 5

A rewriting relation — satisfies Property 5 if, whenever F' = (let D in N) is the
focus of a redex in a term M, F’ is the focus of a second redex, A’, in M, and F’
is a proper subterm of F', then D is not the head of A’.

If F/ = A’, then A’ is a proper subterm of F, so D is not the head of A’. Thus
to verify Property 5, it is sufficient to consider those cases where F' % A’. For
the system of Section 3, the only such case is when A’ is a record selection redex.
By way of contradiction, assume D is the head r = (@) of A’. Then the focus
(let D in N) can only be a dead-variable redex. But the record selection focus

I’ ¢ N must contain r, contradiction.

Proof of the Diamond Property:
If My = My or Mg = M, the result follows trivially. So assume M A—J} M, and

M, A—§ My for some redexes Ay and As, with focuses I} and Fy, respectively. We
consider the following cases.
If 7| and Fy are disjoint, then My, My, and M5 have the following forms:

MO = C[Fl][Fz],
My = ClF][F:],

Here F| and F4 are the focal replacements of Fy and Fy, respectively.

Define Ms = C[F{][Fo 1. If Fo = As, then M 22 M, by compatibility. If
Fy # Ay, then the head of Ay is dominant in C[Fi][-] and therefore also in C[F{][].
Then M; — M3 by Lemma 3. The same argument shows that My — M3.

If Fy and F5 coincide, then by Property 4, My = Ms, so it is sufficient to choose
M3 = Ml.

Otherwise the focus of one redex is properly contained in the focus of another;

24 A. W. Appel and T. Jim

we assume without loss of generality that Fy contains F5. Let Fj be the focal
replacement of Fy. We consider the following cases.

e If F is not a shrinking inlining redex, and F% is contained in the body of F,
then My, My, and M5 have the following forms:

MO = C’l[letDin CQ[FQ]],
M1 = 01[(02[F2])U]a
M2 = C’l[letDin Cz[le]]

Here D is the head of Fy and o is the substitution predicted by Property 1.
Define M5 = Cy[(Cs[Fi])o].
If Ay C Cy[F5), then M, =4 M3 by compatibility and substitutivity.
Otherwise Fy £ Aq, and the head of Ay is dominant in Cy[-] (the head of As
is not D by Property 5). Then M; — M3 by Property 2.
Let y be a variable defined by D. Note that if y does not appear in Cs[Fs],
it appears nowhere in My. Then by Property 3, y does not appear in Cy[F4 |,
so My — Mz by Property 1.

o If Fy is a dead-function-elimination redex and F4 1s contained in the head of
Fy, then My, My, and M5 have the following forms:

MO = C’l[let f(f)ICQ[FQ]lnM],
M1 = Cl[M],

Define M5 = Ci[M]; then My —, M3 by reflexivity.
Since f is a dead function, it has at most one occurrence in function position
in Cs[F5], and no other occurrences anywhere in My. Then by Property 3,
f has at most one occurrence in function position in C3[Fj], and no other
occurrences in M. So My — M3 by eliminating the dead function f.

e If F is a shrinking inlining redex and F5 is contained in the head of Fy, then
Mgy, My, and M5 have the following forms:

Mo = Ci[let f(Z) = Co[Fo] in C3 f(@)]],
M1 = 01[03[(02[F2]){f'_>5}]]a
My, = Ci[let () = Co[F{]im Cal (@)]].

Define M5 = C1[Cs[(Co| Fs N{Z — d}]].
Since f has a single occurrence in function position in My, and no other
occurrences in My, by Property 3 the same is true of f in M. So My — M3
by shrinking inlining.
If Ay C Cy[F5), then M, AQ{E)Ha} M3 by compatibility and substitutivity.
Otherwise Fy Z A,, and the head of A is dominant in Cy[-] (the head of
Ay is not f(¥) = Cs Fa] by Property 5). Therefore, the head of As is also
dominant in C1[Cs[-]], and My — Mz by Property 2.

e If F is a shrinking inlining redex and F5 is contained in the body of F disjoint

Shrinking Lambda Expressions in Linear Time 25

from the inlining site, then My, M7, and M, have the following forms:

My = Ci[let f(7) =M in Co[2][f(@)]],
My = Gi[Co R [M{Z—a}]],
My = Gllet f(7) = M in G RILF@)]].

Define M5 = C [Cs[F5][M{Z — d}]].

Since f has a single occurrence in function position in My, and no other
occurrences in My, by Property 3 the same is true of f in M. So My — M3
by shrinking inlining.

If Fo = As, then M, 22 M3z by compatibility.

If Fy # As, then the head of As; must be dominant in Cy[let f(¥) =
M in Cs[][f(@)]], and cannot be f(z) = M by Property 5. Therefore
the head of Ag is dominant in Cy[Cs[-][M{Z ~ d}]]. So by Lemma 3,
M1 — Mg.

If Fy and F are shrinking inlining redexes, and the inlining site of F appears
in the head of Fy, then My, My, and M5 have the following forms:

Mo = Ci[let f(#) = M in C5[let g(ﬁ)zcs[f(a)Jin Ca[g(b) 1]],
My = Ci[Collet g(y) = C3[M{# +— d}] in 04[9(b)l]],
M2 =

Cillet f(Z) = M in Cof Cul (Cs[f(@) {g— b} 1]
Define Mz = C1[Cao| Caf (C3[M{Z — @} 1){g— I;} 111

Then My — M3z by shrinking inlining.

Note that ¢ and b are not bound in Cj3[-], and are disjoint from #. Then by
Lemmas 1 and 2,

(Cal F(@) {7 = 0}
(Cal M{7 = @})){7 = 0)

(Cafg = DY f(@{7 b))],

-

(Cs{F > DN MA{Z > G{7 — b}} 1.

So My — M3z by shrinking inlining.
If Fy and F are shrinking inlining redexes, and the inlining site of F appears
in the body of Fs, then My, M7, and M5 have the following forms:

-

My = Ci[let f(&) = M in Cy[let g(7) = N in Cs[£(@) [9(5)1]],
M, = cl[cz[letg@:zvincg[M{fHa}Mg@m,
My = Ci[let f(&) =M in Co[Ca[£(@)][N{7—b}]]].

Define Ms = C1[O] Cs[M{Z +— @}][N{#+ b}]]]. Note that f does not
appear in N{§ — E}, and g does not appear in M{Z+ @}. Then My — Mj3
and My — M3z by shrinking inlining.

If F} is a shrinking inlining redex, F5 1s a dead-function redex, and the head
of Iy contains the inlining site of Fy, then My, My, and M have the following
forms:

My = Cy[let f(¥) = M in Cy[let ¢g(§) = Cs[f(d@)] in N]],
My = Gi[Csflet g(7) = Cs[M{Z— d}] in N]],
M2 = C’l[let f(f) =M in CQ[N]]

26

A. W. Appel and T. Jim

Define M3 = C1[C3[N]]. Then My — M3 by eliminating the dead func-
tion f.

Since ¢ is a dead function, 1t has at most one occurrence in function position
in Cs[f(@)], and no other occurrences anywhere in My. Then by Property 3,
¢ has at most one occurrence in function position in Cs[M{Z — a}], and
no other occurrences anywhere in M. So My — M3 by eliminating the dead
function g.

If Fy is a shrinking inlining redex, F% is not a shrinking inlining redex, and
the inlining site of Fy is in the body of F5, then My, M7, and M> have the
following forms:

MO = C’l[let f(f)IMln C’z[letDin Cg[f(a)]]],
M1 = C'l[C'z[letD1nC'3[M{i"r—>Ei}]]],
My = Ci[let f(7) = M in Caf (C5] /(@))]].

Here o is the substitution predicted by Property 1.

Define M3 = Cl[Cz[(03[M{f — Ef}])O’]]

Because f is not in the domain of o, and no variable of M is in the domain
of o, we have

(Cs[f(@) D)o = (Cso)[fldo)],
(C5[M{Z — @}))o (C30)[M{Z v G0}].

Then My — M3z by shrinking inlining.

Let y be a variable defined by D. Note that if y does not appear in Cs[f(@)],
then 1t appears nowhere in M. Then by Property 3, y does not appear in
C3][M{#w— d}], so My — M3z by Property 1.

End proof.

