Homework 2

due Friday Oct 19 in class

1. Convert the following DFA to a regular expression, using the state-elimination technique.

- 2. Convert the following regular expressions to NFA's with ϵ -transitions.
 - (a) **01***
 - (b) (**0**+1)**0**1
 - (c) $00(0+1)^*$
- 3. Prove that the following are not regular languages.
 - (a) $\{0^n 1^n \mid n \ge 1\}$
 - (b) The set of strings of balanced parantheses. These are the strings of characters "(" and ")" that can appear in a well-formed arithmetic expression.
 - (c) $\{0^n 1 0^n \mid n \ge 1\}$
 - (d) $\{0^n 1^m 2^n \mid n, m \in \mathbb{N}\}$
 - (e) $\{0^n 1^m \mid n \le m\}$
 - (f) $\{0^n 1^{2n} \mid n \ge 1\}$
- 4. Prove that the following are not regular languages.
 - (a) $\{0^n \mid n \text{ is a perfect square}\}$
 - (b) $\{0^n \mid n \text{ is a perfect cube}\}$
 - (c) $\{0^n \mid n \text{ is a power of } 2\}$
 - (d) The set of strings of 0's and 1's whose length is a perfect square.
 - (e) The set of strings of 0's and 1's that are of the form ww, that is, some string repeated.
 - (f) The set of strings of 0's and 1's that are of the form ww^R , that is, some string followed by its reverse.
 - (g) The set of strings of 0's and 1's of the form $w\overline{w}$, where \overline{w} is formed from w by replacing 0's by 1's , and vice-versa.
 - (h) The set of strings of the form $w1^n$, where w is a string of 0's and 1's of length n.

- 5. Show that the regular languages are closed under the following operations:
 - (a) $min(L) = \{w \mid w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L\}$
 - (b) $max(L) = \{w \mid w \text{ is in } L \text{ and for no } x \text{ other than } \epsilon \text{ is } wx \text{ in } L\}$
 - (c) $init(L) = \{w \mid \text{for some } x, wx \text{ is in } L\}$

 $\mathit{Hint:}\xspace$ start with a DFA for L and perform a construction to get the desired language.