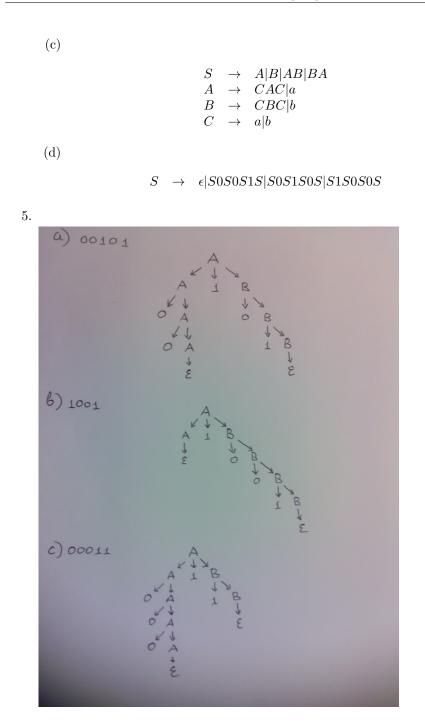
Homework 3 Solutions

DISCLAIMER: The solutions presented below are incomplete and might be insufficient to get full grade on the homework. They do not model acceptable solutions, but rather present an idea of how a certain problem can be approached. A diligent student should be able to work out complete solutions. Please report any mistakes that you find to the instructor and TA(s).

- 1. Let A be a DFA for L. Mark all states reachable from the start state (can use either DFS or BFS for this). $L(A) = L = \Sigma^*$ if and only if all the marked nodes are accepting.
- 2. Let $A_i = (Q_i, \Sigma_i, \delta_i, s_i, F_i)$ be a DFA for L_i , where $i \in \{1, 2\}$. Use product construction to obtain DFA A for $L_1 \cap L_2$, i. e.,

$$A = (Q_1 \times_Q 2, \Sigma_1 \cup \Sigma_2, \delta, (s_1, s_2), F_1 \times F_2),$$

where $\delta(a,b) = (\delta_1(a), \delta_2(b))$ for $a \in \Sigma_1, b \in \Sigma_2$. Then $L_1 \cap L_2 \neq \emptyset$ if and only if some final state is reachable from (s_1, s_2) in A.


		В	Х								
		С	Х	Х							
		D		Х	Х						
		Ε	Х		Х	Х					
3.	(a)	\mathbf{F}	Х	Х		Х	Х				
		G		Х	Х		Х	Х			
		Η	Х		Х	Х		Х	Х		
		Ι	Х	Х		Х	Х		Х	Х	
			Α	В	С	D	Е	F	G	Η	
						0			1		
	(b)	$\rightarrow \{A, D, G\}$				$\{B,H,E\} \mid \{B,H,E\}$					
		$ \begin{array}{c} \rightarrow \{A, D, G\} \\ \{B, H, E\} \end{array} $			}	$\{C, F, I\} \{C, F, I\}$					
		$*\{C, F, I\}$				$\{A, D, G\} \mid \{B, H, E\}$					
4	(a)										

4. (a)

 $S \rightarrow 01|0S1$

(b)

$$\begin{array}{rcccc} S & \rightarrow & EC|AF \\ A & \rightarrow & aA|\epsilon \\ B & \rightarrow & bB|\epsilon \\ C & \rightarrow & cC|\epsilon \\ E & \rightarrow & aEb|aA|bB \\ F & \rightarrow & bFc|bB|cC \end{array}$$

