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SML Coding Standards

Coding standards

It is important that your code be easy to read and understand. To help you achieve that goal, here
are some suggestions for coding conventions.

• Limit your line lengths to about 80 characters or less.

• Indent your code following the style used in provided example code.

• Use the module system to structure your program and have a separate file per top-level mod-
ule. Files containing a module Foo should be named foo.sml. Signatures can either go
into the file of the module they describe or in their own file. If a signature is referenced in
multiple files, then it should be defined in its own file (e.g., if it has multiple implementa-
tions). If a signature FOO is defined in its own file, the file should be named foo.sig or
foo-sig.sml.

• Define signatures for all your structures.

• Document your code: every module and every top-level definition should have a comment
explaining its purpose and invariants. Non-obvious implementation techniques should also
be explained in comments.

• SML has a number of different classes of identifiers and there are common conventions for
how they are named.

Signature names Signature names are all caps with underscores to separate words (e.g.,
FINITE_SET).

Module names Structure and functor names are mixed case with a leading upper-case letter
(e.g., FiniteSet).

Type names Type names are lower case with underscores to separate words (e.g., finite_set).
Type variables Type variables are lower-case (e.g. ’a).
Exception and data constructor names Data constructors (including exceptions) follow the

rules for structures.
Variable names Variables are mixed-case with an initial lower-case letter (e.g.,numElements).
Field names Field names follow the rules for variable names.

• Do not use open; instead define a shorthand local alias for a module. For example:

structure S = FiniteSet
... S.numElements s ...


