
CMSC 22300
Spring 2012

Functional Programming Handout 2
March 29, 2012

SML Coding Standards

Coding standards

It is important that your code be easy to read and understand. To help you achieve that goal, here
are some suggestions for coding conventions.

• Limit your line lengths to about 80 characters or less.

• Indent your code following the style used in provided example code.

• Use the module system to structure your program and have a separate file per top-level mod-
ule. Files containing a module Foo should be named foo.sml. Signatures can either go
into the file of the module they describe or in their own file. If a signature is referenced in
multiple files, then it should be defined in its own file (e.g., if it has multiple implementa-
tions). If a signature FOO is defined in its own file, the file should be named foo.sig or
foo-sig.sml.

• Define signatures for all your structures.

• Document your code: every module and every top-level definition should have a comment
explaining its purpose and invariants. Non-obvious implementation techniques should also
be explained in comments.

• SML has a number of different classes of identifiers and there are common conventions for
how they are named.

Signature names Signature names are all caps with underscores to separate words (e.g.,
FINITE_SET).

Module names Structure and functor names are mixed case with a leading upper-case letter
(e.g., FiniteSet).

Type names Type names are lower case with underscores to separate words (e.g., finite_set).
Type variables Type variables are lower-case (e.g. ’a).
Exception and data constructor names Data constructors (including exceptions) follow the

rules for structures.
Variable names Variables are mixed-case with an initial lower-case letter (e.g.,numElements).
Field names Field names follow the rules for variable names.

• Do not use open; instead define a shorthand local alias for a module. For example:

structure S = FiniteSet
... S.numElements s ...


