
Principal type-schemes for functional programs

Luis Darnas* and Robin Milne~

Edinburgh University

1. Introduction

This paper is concerned with the polymorphic

type discipline of NL, which is a general purpose

functional programming language, although it was

first introduced as a metalanguage (whence its

name) for conducting proofs in the LCF proof system

[GMW] . The type discipline was studied in [Mil] ,

where it was shown to be semantically sound, in a

sense made precise below, but where one important

question was left open: does the type-checking

algorithm - or more precisely, the type assignment

algorithm (since types are assigned by the compiler,

and need not be mentioned by the programmer) - find

the most general type possible for every expression

and declaration? Here we answer the question in

the affirmative, for the purely applicative part

of ML. It follows immediately that it is decid-

able whether a program is well-typed, in contrast

with the elegant and slightly more permissive type

discipline of Coppo [Cop] . After several years

* The work of this author is supported by the
Portuguese Instituto National de Investigacao
Cientifica.

Permksion to copy without fee all or part of this material k granted

provided that the copies are not made ordktributed fordkect
commercial advantage, the ACM copyright notice and the title of the
publication and ha date appear, and notice k given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM O-89791-065-6/82/OOl/0207 $00.75

of successful use of the language, both in LCF and

other research and in teaching to undergraduates,

it has become important to answer these questions -

particularly because the combination of flexibility

(due to polymorphism) , robustness (due to semantic

soundness) and detection of errors at compile time

has proved to be one of the strongest aspects of ML.

The discipline can be well illustrated by a

small example. Let us define in ML the function

“map”, which maps a given function over a given list

- that is,

map f [xl;. ..;xn] =

The required declaration

letrec map f s = if null—

[f(xl); f(xn)]

is

s then nil

else cons(f (hd s)) (map f (tl s))

The type-checker will deduce a type-scheme for “map”

from existing type-schemes for “null”, “nil”, “cons”,

“hd” and “tl”; the term “type-scheme” is appropriate

since all these objects are polymorphic. In fact,

from

null : Va(a list+ bool)

nil : Va(a list)

cons : Va(a + (a list + u list))

hd : Va(u list + a)

tl : VU([

will be deduced

maP : V’WV(3

list + a list)

(u + !3) + (a list+5 list) .

207

Types are built from type constants (bool, . . .) and

type variables (a,~, . . .) using type operators (such

as infixed + for functions and postfixed “list” for

lists) ; a type-scheme is a type with (possibly)

quantification over

Thus , the main

type-scheme deduced

type variables at the outermost.

result of this paper is that the

for such a declaration (and more

generally, for any ML expression) is a principal

type-schemer i.e. that any other type-scheme for the

declaration is a generic instance of it. This is

a generalisation of Hindley’s result for Combinatory

Logic [Hin].

ML may be contrasted

there is no polymorphism,

with ALGOL 68, in which

and with Russell [DDI , in

which parametric types appear explicitly as argu-

ments to polymorphic functions. The generic types

of Ada may be compared with type schemes. For sim-

plicity, our definitions and results here are form-

ulated for a skeletal language, since their extension

to ML is a routine matter. For example, recursion

is omitted since it can be introduced by simply add-

ing

and

2.

the polymorphic fixed-point operator

fix : Va((u+U)+a)

likewise for conditional expressions.

The language

Assuming a set Id of identifiers x , the

language Exp of expressions e is given by the

syntax

e ::= Xle e, I lx.e I let x = e & e’

(where parentheses may be used to avoid ambiguity).

Only the last clause extends the l-calculus. Indeed,

for type checking purposes every let expression could—

be eliminated (by replacing x by e everywhere in

e’) , except for the important consideration that in

208

on-line use of ML declarations

letx=e

are allowed, whose scope (e’) is the remainder

of the on-line session. As illustrated in the

introduction, it must be possible to assign type-

schemes to identifiers thus declared.

Note that types are absent from the language

Exp . Assuming a set of type variables a and of

primitive types I, the syntax of types T and

of typeschemes u is given by

T::= UlllT+T

U ::= TlvCiU

A type-scheme VUl. ..VanT (which we may write

Vet~. ..~nT) has generic type variables
al’” ””’un-

A monotype u is a type containing no type

variables.

3. Type Instantiation

If S is a substitution of types for type

variables, often written [T1/CIl,...,Tanlnl or

[Ti/ail, and IS is a type-scheme, then SO is

the type-scheme obtained by replacing each free

occurrence of a, in a by Ti, renaming the
1

generic variables of o if necessary. Then So

is called an instance of a ; the notions of

substitution and instance extend naturally to

larger syntactic constructs containing type-<

schemes.

By contrast, a type scheme 5 = val. ..clmT

has a generic instance a’ = VB1. ..BnT’ if

T’ = [Ti/ai]T for some types T1r. ..r~mt and

the ~j are nOt free in u. In this case we

shall write 5>0’. Note that instantiation acts

on free

acts on

variables, while

bound variables.

generic instantiation

It follOWS that o > u’

implies so > Su’. restricted scope.

4. Semantics

The semantic domain V for Exp is a complete

partial order satisfying the following equations up

to isomorphism, where Bi is a cpo corresponding

to primitive type Ii:

v=B+B +...
01

+ F + W (disjoint sum)

F=v+v (function space)

w= {.} (error element)

To each monotype u corresponds a subset of V, as

detailed in [Mil] ; ifv EV is in the subset for

u, we write V:U. Further, we write v:T if V:U

for every monotype instance N of T, and we

write v:a if V:T for every T which is a generic

instance of u.

Now let Env = Id+V be the domain of environ-

ments q. The semantic function &:Exp+Env+v

is given in [Mill. Using it, we wish to attach

meaning to assertions of the form

A* e:a

where e E Exp and A is a set of assumptions of

the form x:u’, xE Id. If the assertion is closed,

i.e. if A and o contain no free type variables,

then the sentence is said to hold iff, for every

environment rI, whenever TI[[x II :u’ for each member

X:ls’ of A, it follows that ~[[ell n:u. Further,

an assertion holds iff all its closed instances

hold . Thus, to verify the assertion

X:cl, f:v@(~+(3) 1= (f X):@

It is enough to verify it for every monotype u in

place of 0,. This example illustrates that free

type-variables in an assertion are implicitly

quantified over the whole assertion, while

explicit quantification in a type scheme has

The remainder of this paper proceeds as

follows. First we present an inference system

for inferring valid assertions. Next we present

an algorithm W for computing a type-scheme for

any expression, under assumptions A. We then show

that W is sound, i.n the sense that any type–

scheme which it yields is derivable in the inference

system. Finally we show that W is complete,

in the sense that derivable type–scheme is an

instance of that computed by W.

5. Type Inference

From now on we shall assume that A contains

at most one assumption about each identifier x.

A stands for the result of removing any assump-
X

tion about x from A.

For assumptions A, expression e and type-

scheme a we write

A1-e:u

if this sentence may be derived from the following

inference rules:

TAUT: A 1- X:U (X:U in A)

Al- e:u
INST: — (0 > u’)

Al- e:u’

GEN :
Al- e:o

(CY not free in A)

A F. e:b’cm

A1-e:T’+T
COMB: —

A1’-e’:T’

Al- (e e’):T

AxU{X:T’} ~ e:T

ASS :

A + (kx. e) :T’+T

Al- e:u A U{X:5} 1- e’:T
x

LET :

a 1- (let x=e in e’) :T
—

209

The following example of a derivation is organised

as a tree, in which each node follows from those

immediately above it by an inference rule.

I
INSTI i:Va(ct+a) Fi:Vct[a,+u)

I
i: Va(a+a) 1- i:(a+a)+(a+a) INST

I I

X:a.1- X:(Y

AB S

COMB

+
b J,x.x:ly,+cl I

GEN

1- Ax. x:va(cl+cx)

J-----4
K (leti i = Ax. x in ii) : cx+a

—

The following proposition, stating the semantic

sOundness of inference, can be proved by induction

one.

Proposition 1 (soundness of inference) If A 1- e :0

then AKe:u.

We will also require later the two following

properties of the inference system.

Proposition 2 If S is a substitution and A 1- e:u

then SA I- e:Sa. Moreover if there is a deriv-

ation of A !- e:o of

a derivation of SA t

to n.

height n then

e:Su of height

Proof by induction on n. B

there is also

less or equal

Proof We construct a derivation of AxU{x:o}ke:u
o

from that of AXU{X:O’} + e:u o by substituting each

use of TAUT for X:u’ with X:U followed by an

INST step to derive x:0’ . Note that GEN steps

remain valid since if a occurs free in o then it

also occurs free in 0’ . K1

6. The type assignment algorithm W

The type inference system by itself does not

provide an easy method for finding, given A and e,

a type-scheme o such that A+e:u. We now present

an algorithm W for this purpose. In fact, W

goes a step further. Given A and e, if W

succeeds it finds a substitution S and a type T ,

which are most general in a sense to be made precise

below, such that

To define W

SAt-e:T

we require the unification algor -

ithm of Robinson [Rob] .

Proposition 3 (Robinson) There is an algorithm U

which, given a pair of types, either returns a sub-

stitution V or fails; further

(i) If U(T ,T ‘) returns V , then V unifies T

and T’, i.e. V’r=v’ r’.

(ii)If S unifieS T and T’, then U(T,T’)

returns some V and there is another substit-

ution R such that S = RV.

Moreover, V inVOIVe S Only variables in T and r’.

We also need to define the closure of a type T

with respect to assumptions A ;

Z(T) = Val... anT

where o. ,...,a
In

are the type-variables occurring

free in T but not in A.

Lemma 1 If 0>0’ and AxlJ{x:a’} !- e:o then
0

also Axu{x:a} + e:~o .

210

Algorithm W

W(A, e) = (S, T) where

(i)

(ii)

(iii)

(iv)

NOTE:

Ifeisx and there is an assumption

X: b’C4 . .. CinTg
1

in A then S = ld anc3

T = [B./a IT’ where the t3i’s are new.
li

If e is
‘le2

then

let W(A, e2) = (S1, T2)

and W(SIA, e2) = (S2, T2)

and U(S2T1, T2+B) = V where R is new;

then S = VS2S1 and T=v~.

If e is Ax. el then let ~ be a new type

variable

and W(AxU{x:i3}, el) = (S1,T1) ;

then S = S
1

and T = S16+T1.

If e is let x = el &e2 then—

let W(A,el) = (SI,T2)

and W(SIAxU{x:~A(T)},e2) = (S2,T2) ;
11

then S = S2S1 and T = T2 .

When any of the conditions above is not met

W fails.

The following proposition proves that W meets

our requirements.

Proposition 4 (Soundness of W) If W(A, e)

succeeds with (S,T) then there is a derivation of

SAI- e:T .

Proof By induction on e using proposition 2. @

It follows that there is also a derivation of

SA + e:~(~). We refer to =(T) as a type-scheme

computed by W for e under SA.

7. Completeness of W

Given A and e, we will call Op a principal

type-scheme of e under assumptions A iff

(i) A 1- e:op

(ii) w other o for which A h

instance of o .
P

Our main result, restricted

e:u is a generic

to the simple case

in which A contains no free type-variables, may

be stated as follows:

If A*e:o, for some a , then w computes

a PrlnC1pal type scheme for e under A.

‘I’his is a direct corollary of the following general

theorem, which is a stronger result suited to induc–

tive proof:

Theorem (Completeness of W). Given A and e,

let A’ be an instance of A and o a type-scheme

such that

A’ 1- e:o

Then (i) W(A, e) succeeds

(ii) If W(A, e) = (S, T) then, for some sub-

stitution R,

A’ = RSA and R s—fi(T) > u m

In fact, from the theorem one also derives as

corollaries that it is decidable whether e has any

type at all under assumptions A, and that, if so,

it has a principal type scheme under A.

The detailed proofs of results in this paper,

and related results, will appear in the first

author’s forthcoming Ph.D. Thesis.

211

References

[LNCSn stands for Vol n, Lecture Notes in Computer

Science, Springer-Verlag].

[Cop] M. Coppo, m extended polymorphic type system

for applicative languages, (1980), LNCS 88,

pp 194-204.

[DD] A. Demers and J. Donahue, Report on the prog-

ramming language Russell, (1979), Report No.

TR 79-371, Computer Science Department,

Cornell University.

[GMW] M. Gordon, R. Miiner and C. Wadsworth, (1979),

Edinburgh LCF, LNCS 78.

[Hin] R. Hindley, The principal type-scheme of an

object in Combinatory Logic, (1969), Trans

AMS 146, pp 29-60.

[Mil] R. Milner, A theory of type polymorphism in

programming (1978), JCSS 17,3, pp 348-375.

[Rob] J.A. Robinson, A machine-oriented logic based

on the resolution principle, JACM 12,1 (1965) ,

23-41.

212

