
Standard ML Tutorial1

January 6, 2009

1Adapted from slides and notes by John Reppy and Matthias Blume

Course Project
The project for the course is to implement a small
functional programming language, called LangF.
(Students who have taken CMSC 22100 should
recognize the language as an enrichment of
System F, the polymorphic λ-calculus.) The project
will be divided into four parts, each requiring a
significant programming effort. The implementation
will be undertaken using the Standard ML
programming language and submission of the project
milestones will be managed using the course GForge
server. Programming projects will be individual efforts
(no group submissions).

There are lots of programming languages — why Standard ML?

Why Standard ML?
A language particularly suited to compiler implementation:

I Efficiency
I Safety
I Simplicity
I Higher-order functions
I Static type checking with type inference
I Polymorphism
I Algebraic datatypes and pattern matching
I Modularity
I Garbage collection
I Exceptions and exception handling
I Libraries and tools

What is Standard ML?
SML is a strongly typed, impure, strict, functional language:

I Strongly typed: Every expression in the language has a
type (int, real, bool, etc.). The compiler rejects a
program that does not confirm to the type system.

I Functional: Every expression evalutes to a value. One
kind of value is a function. In fact, every function is a value.
Like other values, functions can be bound to variabels,
passed as arguments to function calls, returned as values
from function calls, and stored in data structures.

What is Standard ML?
SML is a strongly typed, impure, strict, functional language:

I Impure The evaluation of expressions in SML can incur
side-effects, e.g., assigment to locations in mutable data
structures or I/O.

I Strict The arguments to SML functions are evaluated
before the function call is performed. Thus, if one of the
arguments loops forever, then so does the entire program
— regardless of whether or not the function actually
needed the argument. Similarly, all side-effects caused by
the evalution of the argument occur before any side-effects
caused by the evaluation of the function body.

Using the SML/NJ Compiler
I Type sml to run the SML/NJ interactive compiler.

I Installed in usr/local/bin on CS dept. Linux machines.
I Ctrl-d exits the compiler; Ctrl-c interrupts execution.
I Four ways to run ML programs:

1. type in code in the interactive read-eval-print loop

- 1 + 1;

2. load ML code from a file (e.g., foo.sml)

- use "foo.sml";

3. use Compilation Manager (CM)

- CM.make "sources.cm";

4. load/compile a program using one of the previous methods,
then export a function to be run in a later session.

I course project will demonstrate this method

Simple expressions
I Integers: 3, 54, ~3, ~54
I Reals2: 3.0, 3.14159, ~3.6E00
I Booleans: true, false, not
I Strings: "abc", "hello world\n", x ^ ".sml"

I Chars: \#"a", \#"\n",
I Overloaded operators: +, -, *, <, <=
I Lists: [], [1,2,3], ["x","sml"], 1::2::nil
I Tuples: (), (1,true), (3,"abc",false)
I Records: {a=1,b=true}, {name="bob",age=8}
I conditionals, functions, function applications

2floating-point numbers

Value Declarations
Binding a value to a variable.

I syntax

val var = exp

I examples

val x = 3

val y = x + 1

val z = y - x

Thus, variables are identifiers that name values. Once a binding
for a variable is established, the variable names the same value
until it goes out of scope. Standard ML variables are immutable.

Function Declarations
Binding a function (which is a value) to a variable.

I syntax (simplified)

fun varf vara = exp

I examples

fun fact_loop (n, f) =
if n = 0 then f
else fact_loop (n - 1, n * f)

fun fact n = fact_loop (n, 1)

Let expressions
Limit the scope of variables from declarations.

I syntax

let decl in exp end

I example

let
val x = let val y = 1

in y + y
end

fun f z = (z, x * z)
in

f (4 + x)
end

Function expressions
Introduce a function from one argument to one result.
Such an anonymous function has no name, but is a value,
so it can be bound to a variable.

I syntax (simplified)

fn var => exp

I example

val double = fn z => 2.0 * z

val inc = fn x => x + 1

The last is equivalent to

fun inc x = x + 1

Function expressions (cont.)
Because functions are first-class, one function can return
another function as a result.

I example

val add = fn x => fn y => x + y
val inc = add 1 (* == fn y => 1 + y *)
val three = inc 2

The first is equivalent to

fun add x y = x + y

This is one “solution” to functions taking multiple arguments;
such functions are called curried functions.
Another “solution” is to take a value that is a data structure
containing multiple values.

Tuple and record expressions
Create (and take apart) collections of values.

I tuples, syntax

(exp1 , . . . , expn) #digit exp

I tuples, examples

val x = ("foo", 1.0 / 2.0, false)
val first = #1 x
val third = #3 x

I records, syntax

{ lab1 = exp1 , . . . , labn = expn } #lab exp

I records, examples

val car = {make = "Toyota", year = 2001}
val mk = #make car
val yr = #year car

List expressions
Finite sequences of values.

I syntax

nil expx :: expl
[exp1 , . . . , expn]

I examples

val l0 = nil
val l1 = 1.0 :: 2.0 :: 3.0 :: nil
val l2 = [1.0, 2.0, 3.0]
val l3 = 1.0 :: 2.0 :: [3.0]

All of l1, l2, and l3 are equivalent.

Patterns
Decompose compound values; commonly used in value
bindings and function arguments.

I revized syntax for declarations and function expressions

val pat = exp fun varf pata = exp
fn pat => exp

I variable patterns

val z = 3
val pair = (z, true)

⇒ z = 3, pair = (3, true)
I tuple and record patterns

val (x,y) = pair

⇒ x = 3, y = true

val {make=mk, year=yr} = car

⇒ mk = "Toyota", yr = 2001

Patterns (cont.)
I wildcard patterns

val _ = 4 * 3 * 2 * 1

⇒
I constant patterns

val 3 = 1 + 2
val true = 1 < 3

I constructor patterns

val l = [1,2,3]
val fst::rest = l
val [x,_,z] = l

⇒ fst = 1, rest = [2,3], x = 1, z = 3

Patterns (cont.)
I nested patterns

val ((x,y),z) = ((1,2),3)
val (a,b)::_ = [(3.0,true),(5.0,false)]

⇒ x = 1, y = 2, z = 3
⇒ a = 3.0, b = true

I as patterns

val l as (a,b)::_ = [(3.0,true),(5.0,false)]
val t as (p as (x,y),z) = ((1,2),3)

⇒ l = [(3.0,true),(5.0,false)],
⇒ a = 3.0, b = true,
⇒ t = ((1,2),3), p = (1,2), x = 1,
⇒ y = 2, z = 3

Pattern matching
What to do when there is more than one way to decompose a
value? Use pattern matching to consider each possible way.

I match rule, syntax

pat => exp

I match, syntax

pat1 => exp1 | · · · | patn => expn

When a match is applied to a value value, we try the rules
from left to right, looking for the first rule whose pattern
matches value. We then bind the variables in the pattern
and evaluate the expression.

Pattern matching (cont.)
Pattern matching is used in a number of expression and
declaration forms.

I case expression, syntax

case exp of match

I function expression, syntax

fn match

I clausal function declaration, syntax

fun varf pat1 = exp1 | · · · | varf patn = expn

The function name (varf) is the same in all branches.

Pattern matching examples

fun length l =
case l of [] => 0

| _ :: r => 1 + length r

fun length [] = 0
| length (_ :: r) = 1 + length r

val isZero = fn 0 => true | _ => false

fun even 0 = true
| even n = odd (n - 1)

and odd 0 = false
| odd n = even (n - 1)

Types
Every expression has a type.

I primitive types: int, string, bool

3 : int true : bool "abc" : string

I function types: ty1 -> ty2

even : int -> bool

I product types: ty1 * · · · * tyn, unit

(3, true) : int * bool () : unit

I record types: { lab1: ty1 , · · · , labn: tyn }

car : {make: string, year: int}

I type operators: ty list (for example)

[1,2,3] : int list

Type abbreviations
Introduce a new name for a type.

I syntax

type tycon = ty

I examples

type point = real * real
type line = point * point
type car = {make: string, year: int}

I syntax

type tyvar tycon = ty

I examples

type ’a pair = ’a * ’a
type point = real pair

Datatypes
Algebraic datatypes are one of the most useful and convenient
features of Standard ML (and other functional programming
languages). They introduce a (brand) new type that is a tagged
union of some number of variant types.

I syntax

datatype tycon = con1 of ty1 | · · ·| conn of tyn

I example

datatype color = Red | Green | Blue
datatype shape =

Circle of color * real
| Rectangle of color * real * real

Datatypes (cont.)
The data constructors can be used in both expressions to
create values of the new type and in pattrns to discriminate
variants and to decompose values.

I example

fun area s =
case s of

Circle (_, r) = Math.pi * r * r
| Rectangle (_, l1, l2) => l1 * l2

val c = Circle (Red, 2.0)

val a = area c

Datatypes can be recursive.
I example

datatype intlist = Nil | Cons of int * intlist

Datatype example

datatype btree = LEAF
| NODE of int * btree * btree

fun depth LEAF = 0
| depth (NODE (_, t1, t2)) =

max (depth t1, depth t2)

fun insert (LEAF, k) = NODE (k, LEAF, LEAF)
| insert (NODE (i, t1, t2), k) =

if k > i then NODE (i, t1, insert (t2, k))
else if k < i then NODE (i, insert (t1, k), t2)
else NODE (i, t1, t2)

(* in-order traversal of btrees *)
fun btreeToList LEAF = []

| btreeToList (NODE (i, t1, t2)) =
(btreeToList t1) @ (i :: (btreeToList t2))

Representing programs as datatypes

type id = string

datatype binop = PLUS | MINUS | TIMES | DIV

datatype stm = SEQ of stm * stm (* s1 ; s2 *)
| ASSIGN of id * exp (* x := e *)
| PRINT of exp list (* print (e1,...) *)

and exp = VAR of id (* x *)
| CONST of int (* 3 *)
| BINOP of binop * exp * exp (* e1 + e2 *)
| ESEQ of stm * exp (* s ; e *)

val prog =
SEQ (ASSIGN ("a", BINOP (PLUS, CONST 5, CONST 3)),

PRINT (VAR "a"))
(* a := 5 + 5 ; print (a) *)

Computing properties of programs: size

fun sizeS (SEQ(s1,s2)) = sizeS s1 + sizeS s2
| sizeS (ASSIGN(_,e)) = 2 + sizeE e
| sizeS (PRINT es) = 1 + sizeEL es

and sizeE (BINOP(_,e1,e2)) = sizeE e1 + sizeE e2 + 2
| sizeE (EQSEQ (s, e)) = sizeS s + sizeE e
| sizeE _ = 1

and sizeEL [] = 0
| sizeEL (e::es) = sizeE e + sizeEL es

sizeS prog⇒ 8

Type inference
When defining values (including functions), types do not need
to be declared — they will be inferred by the compiler:

- fun f x = x + 1;
val f = fn : int -> int

- fun isPos n = n > 0
val isPos = fn : int -> bool

Any inconsistencies will be detected as type errors.

- if 1 < 2 then 3 else 4.0;
stdIn:1.1-1.25 Error: types of if branches do not agree [literal]

then branch: int
else branch: real
in expression:

if 1 < 2 then 3 else 4.0

Some error messages are better than others....

Type inference (cont.)
Type inference works with all types in the language.

- fun area (Circle (_,r)) = Math.pi * r * r
= | area (Rectangle (_,l1,l2)) = l1 * l2;
val area = fn : shape -> real

Overloaded operators default to int;
use type annotations (called ascriptions) to be explicit.

- fun add (x, y) = x + y;
val add = fn : int * int -> int
- fun addR (x: real, y) = x + y;
val addR = fn : real * real -> real

Type inference (cont.)
Tuple and record selectors need to know the type of the
argument.

- fun first p = #1 p
stdIn:1.1-1.19 Error: unresolved flex record

(can’t tell what fields there are besides #1)
- fun first (p: int * int) = #1 p;
val first = fn : int * int -> int
- val getMake = fn {make=mk, ...} => mk;
stdIn:2.5-2.38 Error: unresolved flex record

(can’t tell what fields there are besides #make)
- val getMake = fn ({make=mk, ...}: car) => mk;
val getMake = fn : car -> string

Polymorphic type inference
Type inference produces the most general type, which may be
polymorphic.

- fun ident x = x;
val ident = fn : ’a -> ’a
- fun pair x = (x, x);
val pair = fn : ’a -> ’a * ’a
- val fst = fn (x, y) => x
val fst = fn : ’a * ’b -> ’a
- val foo = pair 4.0;
val foo = (4.0,4.0) : real * real

pair was used at the type real -> real * real.

- val z = fst foo;
val z = 4.0 : real

fst was used at the type real * real -> real.

Polymorphic datatypes

datatype ’a btree = LEAF
| NODE of ’a * ’a btree * ’a btree

fun depth LEAF = 0
| depth (NODE (_, t1, t2)) =

max (depth t1, depth t2)
val depth = fn : ’a btree -> int

fun btreeToList LEAF = []
| btreeToList (NODE (x, t1, t2)) =

(btreeToList t1) @ (x :: (btreeToList t2))
val btreeToList = fn : ’a btree -> ’a list

fun btreeMap f LEAF = LEAF
| btreeMap f (NODE (i, t1, t2)) =

NODE (f x, btreeMap f t1, btreeMap f t2)
val btreeMap = fn : (’a -> ’b) -> ’a btree -> ’b btree

Exceptions
- 5 div 0; (* primitive failure *)
uncaught exception Div

exception NotFound of string (* declare new exception *)
type ’a dict = (string * ’a) list
fun lookup (s, nil) = raise (NotFound s)

| lookup (s, (k,v)::rest) =
if s = k then v else lookup (s, rest)

val lookup : string * ’a dict -> ’a

val d = [("foo",2), ("bar",~1)]
val d : (string * int) list (* == int dict *)

val x = lookup ("foo", d)
val x = 2 : int

val y = lookup ("baz", d)
uncaught exception NotFound

val y = lookup ("baz", d) handle NotFound s =>
(print ("NotFound: " ^ s ^ "\n") ; 0)

NotFound: baz
val y = 0 : int

References and Assignments
Although SML variables are immutable, SML provides a type of
mutable cells.

type ’a ref
val ref : ’a -> ’a ref
val ! : ’a ref -> ’a
val := : ’a ref * ’a -> unit

- val lineNum = ref 0; (* create mutable cell *)
val lineNum = ref 0 : int ref

- fun lineCount () = !lineNum; (* access mutable cell *)
fun lineCount = fn : unit -> int

- fun newLine () = lineNum := !lineNum + 1; (* increment the cell *)
fun newLine = fn : unit -> unit

- val lineNum = ref 0; (* create mutable cell *)
val lineNum = ref 0 : int ref

References and Assignments (cont.)
SML variables are immutable:

local
val x = 1

in
fun new1 () = let val x = x + 1 in x end

end

new1 always returns 2.

SML references are mutable:

local
val x = ref 1

in
fun new2 () = (x := !x + 1; !x)

end

new2 returns 2, 3, 4, . . . on successive calls.

Modules – Structures
A structure is an encapsulated, named, collection of
declarations.
structure Ford =
struct

type car = {make: string, built: int}
val first = {make = "Ford", built: 1904}
fun mutate ({make,built}: car) year =

{make = make, built = year}
fun built ({built, ...}: car) = built
fun show (c) = if built c < built first then " - "

else "(generic Ford)"
end

structure Year =
struct

type year = int
val first = 1900
val second = 2000
fun newYear (y: year) = y + 1
fun show (y: year) = Int.toString y

end

structure MutableCar =
struct

structure C = Ford
structure Y = Year

end

Modules – Signatures
A signature is an encapsulated, named, collection of
specifications.
signature MANUFACTURER =
sig

type car
val first : car
val built : car -> int
val mutate : car -> int -> car
val show : car -> string

end

signature YEAR =
sig

type year
val first: year
val second: year
val newYear: year -> year
val show: year -> string

end

signature MCSIG =
struct

structure C : MANUFACTURER
structure Y : YEAR

end

Modules – Signature Matching
A structure S matches signature SIG if every specification in
SIG is satisfied by a component of S.
structure YearX : YEAR =
struct

type year = int
type century = string
val first = 1900
val second = 2000
fun newYear (y: year) = y + 1
fun leapYear (y: year) = y mod 4 = 0
fun show (y: year) = Int.toString y

end

structure MCar : MCSIG = MutableCar

(* Use ’dot notation’ to access components of structures. *)
val classic = YearX.show 1968

val antique = MCar.Y.show 1930

(* Can’t access components not specified in signature. *)
val x = YearX.leapYear(YearX.first) (* ERROR *)

Modules – Functors
A functor is a “function” from structures to structures; create
new structure parameterized by a signature.
signature ORD =
sig

type t
val lt : t * t -> bool

end

functor Sort(X: ORD) =
struct

fun insert(x, nil) = [x]
| insert(x, l as y::ys) =

if X.lt (x, y) then x::l
else y::(insert (x, ys))

fun sort (l: X.t list) =
foldl insert nil l

end

structure IntOrd =
struct

type t = int
val lt = fn (x, y) => x < y

end

structure IntSort = Sort(IntOrd)

val one_two_three_four = IntSort.sort [2,4,3,1]

Modules – Type Abstraction
Sometimes we don’t want clients of a structure to know how a
type is implemented.
Consider the problem of providing unique identifiers:
signature UID =
sig

type uid
val compare : uid * uid -> order
val gensym : unit -> uid

end

structure Uid : UID =
struct

type uid = int
val compare = Int.compare
val count = ref 0 (* hidden *)
fun gensym () = let val id = !count

in count := id + 1; id
end

end

val a = Uid.gensym ()
val b = Uid.gensym ()
val _ (* LESS *) = Uid.compare (a, b)

val c: Uid.uid = 1
val _ (* EQUAL *) = Uid.compare (b, c)

But, two unique identifiers should be equal iff they came from
the same gensym.

Modules – Type Abstraction
Sometimes we don’t want clients of a structure to know how a
type is implemented.
Consider the problem of providing unique identifiers:
structure Uid :> UID =
struct

type uid = int (* abstract *)
val compare = Int.compare
val count = ref 0 (* hidden *)
fun gensym () = let val id = !count

in count := id + 1; id
end

end

val a = Uid.gensym ()
val b = Uid.gensym ()
val _ (* LESS *) = Uid.compare (a, b)

(* Don’t know that Uid.uid == int. *)
val c: Uid.uid = 1 (* ERROR *)

Readers
The StringCvt module defines the reader type, which defines
a pattern of functional input.

type (’item, ’strm) reader =
’strm -> (’item, ’strm) option

val Int.scan : (char, ’strm) reader -> (int, ’strm) reader
val Bool.scan : (char, ’strm) reader -> (bool, ’strm) reader
val List.scan : ((char, ’strm) reader -> (’a, ’strm) reader) ->

(char, ’strm) reader -> (’a list, ’strm) reader

Readers – Examples

fun scanBool charRdr strm =
let

fun chkStrm (strm,[]) = SOME strm
| chkStrm (strm,x::xs) =

case charRdr strm of
NONE => NONE

| SOME (c, strm’) =>
if c = x

then chkStrm (strm’,xs)
else NONE

in
case chkStrm (strm, explode "false") of

SOME strm’ => SOME (false,strm’)
| NONE => (case chkStrm (strm, explode "true") of

SOME strm’ => SOME (true, strm’)
| NONE => NONE)

end

val scanBool : (char, ’strm) reader -> (bool, ’strm) reader

Readers – Examples

fun skipWS charRdr =
let

fun skip strm =
case charRdr strm of

NONE => strm
| SOME (c, strm’) =>

if Char.isSpace c
then skip strm’
else strm

in
skip

end

val skipWS : (char, ’strm) reader -> ’strm -> ’strm

