

White Paper

Is the Free Lunch Really Over? Scalability

in Manycore Systems

Part 2: Using Locks Efficiently

By Michael Wrinn

Introduction

For the multi-core, shared-memory computing platforms currently, applications are
typically rendered parallel with one or another choice of threading model – extensions,
such as Pthreads or OpenMP™, to sequential languages. While this situation is less than
ideal (see the analysis, for example, by Lee, 2006), it is the current industry practice. The
shared-state paradigm of typical threading models, where all threads share the same
memory with equal access to its data, requires careful protocol to prevent unintended
consequences. The key difficulty is the race condition, where threads access data in an
unanticipated sequence, with unintended results. Race conditions are the worst kind of
bug: insidious, very difficult to detect, reproduce, or diagnose. Tools are essential to
mitigating these difficulties [shameless plug: the Intel® Thread Checker is quite good at
this]. Another category of irritants is deadlocks/livelocks, though – due to the fact that
the code execution halts – these are normally easier to diagnose and correct. These
correctness challenges are widely discussed in threading books and articles, and will not
be addressed here. We focus, instead, on a necessary component of threaded
programming – locks – and their potential impact on performance.

http://www.computer.org/portal/site/computer/menuitem.5d61c1d591162e4b0ef1bd108bcd45f3/index.jsp?path=computer/homepage/0506&file=cover.xml&xsl=article.xsl

Contents

1 Introduction .. 3

2 Factors Impacting Scalability: using locks efficiently ... 4

3 References.. 9

Figures

2-1. Thread performance degradation from inefficient locking mechanisms4
2-2. Schematic representation of hash table creation...5
2-3. Code segment showing inefficient use of Critical Section ...5
2-4a Code segments showing housekeeping steps to use omp_set_lock.......................................6
2-4b. Code segment showing efficient locking with omp_set_lock ...6
2-5. Relative cost for different locking mechanisms..7
2-6. Schematic comparison of static to private locks.. 8

Introduction

For the multi-core, shared-memory computing platforms currently, applications are
typically rendered parallel with one or another choice of threading model – extensions,
such as Pthreads or OpenMP™, to sequential languages. While this situation is less than
ideal (see the analysis, for example, by Lee, 2006), it is the current industry practice.
The shared-state paradigm of typical threading models, where all threads share the same
memory with equal access to its data, requires careful protocol to prevent unintended
consequences. The key difficulty is the race condition, where threads access data in an
unanticipated sequence, with unintended results. Race conditions are the worst kind of
bug: insidious, very difficult to detect, reproduce, or diagnose. Tools are essential to
mitigating these difficulties [shameless plug: the Intel® Thread Checker is quite good at
this]. Another category of irritants is deadlocks/livelocks, though – due to the fact that
the code execution halts – these are normally easier to diagnose and correct. These
correctness challenges are widely discussed in threading books and articles, and will not
be addressed here. We focus, instead, on a necessary component of threaded
programming – locks – and their potential impact on performance.

Even when parallel programs have been scrubbed to the point of reasonable confidence
in their correctness, there remain potential unintended consequences in performance
degradation. Applying a lock does, after all “re-serialize” that portion of execution; the
goal then is to use these only as much locking as is necessary, but no more.

This scalability series assumes the code is correct, and looks are factors which may
inhibit the scalability of the correctly-running application. In this episode, we look at the
efficient use of locks, and in particular at two guiding principles: lock the data, not the
code, and use the right lock for the job.

http://www.computer.org/portal/site/computer/menuitem.5d61c1d591162e4b0ef1bd108bcd45f3/index.jsp?path=computer/homepage/0506&file=cover.xml&xsl=article.xsl

Factors impacting scalability: using locks efficiently

1.1 Profile view: when locks intrude

Good lock management is essential to scalable parallel performance. Figure 2-1
illustrates the opposite, a profile trace of poor lock management. Each bar represents a
timeline of execution for a particular thread: green areas indicating busy, executing
presumably useful work; idle, as the term suggests, is time spent waiting for other
threads, and in critical indicates time spent inside locked regions of execution. (This
example is from an actual profile, illustrated using the Intel® Thread Profiler.) In the
example profile shown, once a critical region is reached by one thread, all others are
rendered idle; the overall execution in those sections has been serialized. This particular
problem often occurs when work inside and outside the protected region (e.g. a critical
section) is very small, so threads “pile up” on the lock. Such design limitations may be
avoided by following the guidelines discussed below.

Figure 2-1. Thread performance degradation from inefficient locking mechanisms.

1.2 Lock data, not code

 be accessed serially. What usually need this kind of protection

Lock only what needs to
are data elements; whenever possible, lock data, not code. Programming adepts have
been repeating this for years, and it bears repeating again and again. (see, for example,
Russell’s somewhat salty and entertaining Unreliable Guide to Locking, published in
2000. More recently, Sutter nicely alludes to this technique (without actually repeati
the phrase) in a 2008 article on

ng
concurrency-friendly data structures.)

In our own courses at Intel Software College, we teach this concept right up front, using
a link-list example. Consider the example of creating a hash table (a collection of linked
lists), shown schematically in Figure 2-2. The lists may be operated upon in parallel, but

http://kernelbook.sourceforge.net/kernel-locking.pdf
http://www.ddj.com/hpc-high-performance-computing/208801371
http://www.ddj.com/hpc-high-performance-computing/208801371

updates to any particular list must be protected (locked) to prevent a race condition. One
very simple way to accomplish this is with a Critical Section, shown (with OpenMP
syntax) in Figure 2-3.

Figure 2-2. Schematic representation of hash table creation.

Figure 2-3. Code segment showing inefficient use of Critical Section (don’t do this).

In this example, we have locked the code: we prevent two threads from trying to update

t

A much better approach is to lock the data. OpenMP, as with most threading models,

 into a

le in

To use this approach, a bit of housekeeping is in order: the lock variable must be declared

Figure 2-4a. Code segments showing housekeeping steps to use omp_set_lock.

#pragma omp parallel for private (index)
for (i = 0; i < elements; i++) {
 index = hash(element[i]);
 #pragma omp critical
 insert_element (element[i], index);}

the same list simultaneously by putting function insert_element inside a critical section.
Unfortunately, this effectively serializes the loop, because the work of inserting an
element into the hash table is the principal activity of the loop. This approach will resul
in little, if any, speed improvement from parallelism.

gives us the ability to lock individual chains of the hash table. We associate a lock
variable with each index in the hash table. When we are ready to insert an element
particular chain, we set the lock associated with that chain. The advantage of this
approach is that a group of threads may all be inserting elements into the hash tab
parallel, as long as these elements hash to different table indices.

as type omp_lock_t, and initialized with the function omp_lock_t. Figure 2-4a shows
these steps for the hash table case, where we have declared a lock variable hash_lock.

Figure 2-4b. Code segment showing efficient locking with omp_set_lock (do this).

1.3 Use the right locking mechanism for the job

ies: use the lightest possible
mple,
tion

omic increments/decrements

 with spin count

n, SetCriticalSectionSpinCount

Signal that a condition has been changed or satisfied

Works both within and across processes (since it’s a kernel object)

orks across processes

The “s in highly-contended situations: the
critical section is initialized with a count; whenever a thread attempts to access that section,

/* hash_lock declared as type omp_lock_t */
omp_lock_t hash_lock[HASH_TABLE_SIZE];

/* locks initialed in function ‘main’ */
for (i = 0; i < HASH_TABLE_SIZE; i++)

 omp_init_lock(&hash_lock[i]);

void insert_element (ELEMENT e, int i)
{
 omp_set_lock (&hash_lock[i]);

 k (&hash_lock[i]);
}

/* Code to insert element e */
omp_unset_loc

Using the right locking mechanism nearly always impl
mechanism. Threading models supply a hierarchy of locks; in the Win32 API, for exa
the choices of synchronization primitives are as follows, in increasing order of execu
cost:

• At

o InterlockedIncrement

• Critical Section, Critical Section

o EnterCriticalSection, LeaveCriticalSectio

o Works within a single process

• Events

o

• Mutex

o

• Semaphore

o also w

pin count” variant of critical section can work well

rather than sleeping, it remains active for a time period determined by the spin count, and
then tests again. This avoids the overhead of blocking, then reawakening, the thread which
is waiting for a lock to be released.

Measurements of the overhead (the actual lock times, normalized to the smallest time of
InterlockedIncrement) of each locking mechanism are compared in Figure 2-5. The

cks are
 the

terlockedIncrement

Figure 2-5. R ati

experiment was arranged to avoid contention (thus the critical section shows the same
performance with and without spin count). Notice that the mutex and semaphore lo
dramatically more expensive, more than 50 times slower than the others, going right off
scale of the graph. To repeat: in terms of cost:

Mutex or semaphore >> critical section > In

el ve cost for different locking mechanisms, scaled to InterlockedIncrement.

or those who’d like to try this at home: the complete lab which generated the results of
Figure 2-5, including course code, is available for college/university classroom through
F

Intel’s Academic Community.

Besides choosing the right level of lock – that is, the least expensive lock which will do
the job – it is important to apply the lock in the least intrusive way possible. In generally,

 by

global (static) locks are to be avoided. A simple case study illustrates this point. A client
code was found to show negative scaling at 4 threads or more – that is, the application
ran slower with four threads, on four cores, than it did when running with a single
thread. The root cause was discovered to be that a class defined a critical section as a
static member variable. The solution: have each instance of class use separate lock
removing static declaration. Once this was done, the application performance did

http://software.intel.com/sites/college/academic/

increase with increasing core/thread count. Figure 2-6 shows the concept in schematic
form, before and after this change.

atic comparison of static (Before) to private lFigure 2-6. Schem ocks (After).

o conclude: efficient lock usage has a dramatic impact on scalability. Lock data, not
code. Use the least expensive locking mechanism possible. Beware of static locks.
T

References

Edward Lee, The Problem with Threads, IEEE Computer, May 2006

Intel Threading Analysis Tools

Paul Rusty Russell, Unreliable Guide To Locking

Herb Sutter, Dr Dobbs Journal 33(7), July 2008

Intel Software College. Contains links to classes such as Introduction to Parallel
Programming and more.

A growing body of teaching material for concurrency may be found at the Intel Academic
Community.

A.1.1 Acknowledgments

This material is derived from a longer session by Intel Software College.

About the Author

Michael Wrinn is a senior course architect in the Intel Software College, where he
collaborates with universities to bring parallel computing to the mainstream of
undergraduate education. Prior assignments include managing Intel's software
engineering lab in Shanghai, and directing the human interface technology research lab.
He was Intel's representative to the committee which produced the first OpenMP
specification, and remains active in the parallel computing community. Before joining
Intel, Michael worked at Accelrys (San Diego), implementing commercial and research
simulation codes on a wide variety of parallel/HPC systems. He holds a Ph.D. (in
quantum mechanics) and a B.Sc. (mathematics/chemistry/physics) from McGill
University.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

This specification, as well as the software described in it, is furnished under license and may only be used or copied in accordance with the terms of
the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See www.intel.com/products/processor_number for details.

The Intel processor/chipset families may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

http://www.computer.org/portal/site/computer/menuitem.5d61c1d591162e4b0ef1bd108bcd45f3/index.jsp?path=computer/homepage/0506&file=cover.xml&xsl=article.xsl
http://www3.intel.com/cd/software/products/asmo-na/eng/threading/219785.htm
http://kernelbook.sourceforge.net/kernel-locking.pdf
http://www.ddj.com/hpc-high-performance-computing/208801371
http://software.intel.com/sites/college/default.php
http://software.intel.com/sites/college/academic/
http://software.intel.com/sites/college/academic/

Copies of documents, which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's Web Site.

Intel and the Intel Logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

§

	Contents
	Figures
	Introduction
	Factors impacting scalability: using locks efficiently
	1.1 Profile view: when locks intrude
	1.2 Lock data, not code
	1.3 Use the right locking mechanism for the job

	References

