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Introduction 

For the multi-core, shared-memory computing platforms currently, applications are 
typically rendered parallel with one or another choice of threading model – extensions, 
such as Pthreads or OpenMP™, to sequential languages. While this situation is less than 
ideal (see the analysis, for example, by Lee, 2006), it is the current industry practice. The 
shared-state paradigm of typical threading models, where all threads share the same 
memory with equal access to its data, requires careful protocol to prevent unintended 
consequences. The key difficulty is the race condition, where threads access data in an 
unanticipated sequence, with unintended results. Race conditions are the worst kind of 
bug: insidious, very difficult to detect, reproduce, or diagnose. Tools are essential to 
mitigating these difficulties [shameless plug: the Intel® Thread Checker is quite good at 
this].  Another category of irritants is deadlocks/livelocks, though – due to the fact that 
the code execution halts – these are normally easier to diagnose and correct. These 
correctness challenges are widely discussed in threading books and articles, and will not 
be addressed here. We focus, instead, on a necessary component of threaded 
programming – locks – and their potential impact on performance.   
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Introduction 

For the multi-core, shared-memory computing platforms currently, applications are 
typically rendered parallel with one or another choice of threading model – extensions, 
such as Pthreads or OpenMP™, to sequential languages. While this situation is less than 
ideal (see the analysis, for example, by Lee, 2006), it is the current industry practice. 
The shared-state paradigm of typical threading models, where all threads share the same 
memory with equal access to its data, requires careful protocol to prevent unintended 
consequences. The key difficulty is the race condition, where threads access data in an 
unanticipated sequence, with unintended results. Race conditions are the worst kind of 
bug: insidious, very difficult to detect, reproduce, or diagnose. Tools are essential to 
mitigating these difficulties [shameless plug: the Intel® Thread Checker is quite good at 
this].  Another category of irritants is deadlocks/livelocks, though – due to the fact that 
the code execution halts – these are normally easier to diagnose and correct. These 
correctness challenges are widely discussed in threading books and articles, and will not 
be addressed here. We focus, instead, on a necessary component of threaded 
programming – locks – and their potential impact on performance.   

Even when parallel programs have been scrubbed to the point of reasonable confidence 
in their correctness, there remain potential unintended consequences in performance 
degradation. Applying a lock does, after all “re-serialize” that portion of execution; the 
goal then is to use these only as much locking as is necessary, but no more. 

This scalability series assumes the code is correct, and looks are factors which may 
inhibit the scalability of the correctly-running application. In this episode, we look at the 
efficient use of locks, and in particular at two guiding principles: lock the data, not the 
code, and use the right lock for the job. 
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Factors impacting scalability: using locks efficiently  

1.1 Profile view: when locks intrude 

Good lock management is essential to scalable parallel performance. Figure 2-1 
illustrates the opposite, a profile trace of poor lock management.  Each bar represents a 
timeline of execution for a particular thread: green areas indicating busy, executing 
presumably useful work; idle, as the term suggests, is time spent waiting for other 
threads, and in critical indicates time spent inside locked regions of execution. (This 
example is from an actual profile, illustrated using the Intel® Thread Profiler.) In the 
example profile shown, once a critical region is reached by one thread, all others are 
rendered idle; the overall execution in those sections has been serialized. This particular 
problem often occurs when work inside and outside the protected region (e.g. a critical 
section) is very small, so threads “pile up” on the lock. Such design limitations may be 
avoided by following the guidelines discussed below.  

 

Figure 2-1. Thread performance degradation from inefficient locking mechanisms. 

 
 
 

 

1.2 Lock data, not code 

 be accessed serially. What usually need this kind of protection 

 

Lock only what needs to
are data elements; whenever possible, lock data, not code.  Programming adepts have 
been repeating this for years, and it bears repeating again and again. (see, for example,
Russell’s somewhat salty and entertaining Unreliable Guide to Locking, published in 
2000. More recently, Sutter nicely alludes to this technique (without actually repeati
the phrase) in a 2008 article on 

ng 
concurrency-friendly data structures.) 

In our own courses at Intel Software College, we teach this concept right up front, using 
a link-list example. Consider the example of creating a hash table (a collection of linked 
lists), shown schematically in Figure 2-2.  The lists may be operated upon in parallel, but 

http://kernelbook.sourceforge.net/kernel-locking.pdf
http://www.ddj.com/hpc-high-performance-computing/208801371
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updates to any particular list must be protected (locked) to prevent a race condition. One
very simple way to accomplish this is with a Critical Section, shown (with OpenMP 
syntax) in Figure 2-3. 

 

 

Figure 2-2. Schematic representation of hash table creation.  

 

 

Figure 2-3. Code segment showing inefficient use of Critical Section (don’t do this). 

 

 

 

 

In this example, we have locked the code: we prevent two threads from trying to update 

t 

A much better approach is to lock the data. OpenMP, as with most threading models, 

 into a 

le in 

To use this approach, a bit of housekeeping is in order: the lock variable must be declared 

 

 

 

Figure 2-4a. Code segments showing housekeeping steps to use omp_set_lock. 

#pragma omp parallel for private (index) 
for (i = 0; i < elements; i++) { 
   index = hash(element[i]); 
   #pragma omp critical 
   insert_element (element[i], index);} 

the same list simultaneously by putting function insert_element inside a critical section. 
Unfortunately, this effectively serializes the loop, because the work of inserting an 
element into the hash table is the principal activity of the loop. This approach will resul
in little, if any, speed improvement from parallelism. 

gives us the ability to lock individual chains of the hash table. We associate a lock 
variable with each index in the hash table. When we are ready to insert an element
particular chain, we set the lock associated with that chain. The advantage of this 
approach is that a group of threads may all be inserting elements into the hash tab
parallel, as long as these elements hash to different table indices. 

as type omp_lock_t, and initialized with the function omp_lock_t. Figure 2-4a shows 
these steps for the hash table case, where we have declared a lock variable hash_lock. 



 

 

 

 

 

Figure 2-4b. Code segment showing efficient locking with omp_set_lock (do this). 

 

 

1.3 Use the right locking mechanism for the job 

ies: use the lightest possible 
mple, 
tion 

omic increments/decrements 

 with spin count 

n, SetCriticalSectionSpinCount 

Signal that a condition has been changed or satisfied 

Works both within and across processes (since it’s a kernel object) 

orks across processes 

The “s  in highly-contended situations: the 
critical section is initialized with a count; whenever a thread attempts to access that section, 

/* hash_lock declared as type omp_lock_t */ 
omp_lock_t hash_lock[HASH_TABLE_SIZE]; 
 
/* locks initialed in function ‘main’ */ 
for (i = 0; i < HASH_TABLE_SIZE; i++) 

   omp_init_lock(&hash_lock[i]); 

 

 

 

void insert_element (ELEMENT e, int i) 
{ 
   omp_set_lock (&hash_lock[i]); 
   
   k (&hash_lock[i]); 
} 

/* Code to insert element e */ 
omp_unset_loc

 

Using the right locking mechanism nearly always impl
mechanism. Threading models supply a hierarchy of locks; in the Win32 API, for exa
the choices of synchronization primitives are as follows, in increasing order of execu
cost: 

• At

o InterlockedIncrement 

• Critical Section, Critical Section

o EnterCriticalSection, LeaveCriticalSectio

o Works within a single process 

• Events 

o 

• Mutex 

o 

• Semaphore  

o also w

pin count” variant of critical section can work well



rather than sleeping, it remains active for a time period determined by the spin count, and 
then tests again. This avoids the overhead of blocking, then reawakening, the thread which 
is waiting for a lock to be released. 

Measurements of the overhead (the actual lock times, normalized to the smallest time of 
InterlockedIncrement) of each locking mechanism are compared in Figure 2-5. The 

cks are 
 the 

terlockedIncrement  

 

Figure 2-5. R ati

experiment was arranged to avoid contention (thus the critical section shows the same 
performance with and without spin count). Notice that the mutex and semaphore lo
dramatically more expensive, more than 50 times slower than the others, going right off
scale of the graph. To repeat: in terms of cost: 

Mutex or semaphore >> critical section > In

el ve cost for different locking mechanisms, scaled to InterlockedIncrement. 

 

 

or those who’d like to try this at home: the complete lab which generated the results of 
Figure 2-5, including course code, is available for college/university classroom through 
F

Intel’s Academic Community. 

Besides choosing the right level of lock – that is, the least expensive lock which will do 
the job – it is important to apply the lock in the least intrusive way possible. In generally, 

 by 

global (static) locks are to be avoided. A simple case study illustrates this point. A client 
code was found to show negative scaling at 4 threads or more – that is, the application 
ran slower with four threads, on four cores, than it did when running with a single 
thread. The root cause was discovered to be that a class defined a critical section as a 
static member variable. The solution: have each instance of class use separate lock
removing static declaration. Once this was done, the application performance did 

http://software.intel.com/sites/college/academic/


increase with increasing core/thread count. Figure 2-6 shows the concept in schematic 
form, before and after this change. 

atic comparison of static (Before) to private lFigure 2-6. Schem ocks (After). 

 

 

 

o conclude: efficient lock usage has a dramatic impact on scalability. Lock data, not 
code. Use the least expensive locking mechanism possible. Beware of static locks. 
T
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