
C Tutorial
Session #1

• History of C

• Why we use C

• First C program

• Compile and Run your

program

• Functions, Basic Types,

printf ()

• Type storage

• Strings and characters

• Operators

• Loops

History of C

� First developed at Bell Labs during the early

1970's

� Derived from a computer language named B

� Initially designed as a system programming

language under UNIX

� Function based, weakly typed, formal syntax

grammar and case-sensitive

� With its power comes the ability to create havoc

Why C

� Despite the presence of many other
programming languages, C is still widely
used as a system programming language

� C is extensively used in the area of Operating
Systems, Compilers, Embedded Systems,
and Scientific Computing

� Features: efficient, flexible, low level
programming readily available

Prerequisites

� A Linux/Unix machine

� Have a basic idea about the file system

� Basic programming concepts

First C Program

#include <stdio.h>

int main()

{

printf("Hello World!\n");

return (1);

}

Line 1: #include <stdio.h>

� #include is a pre-processor directive

� stdio.h is a standard C library header file used
for I/O

� Header files are inserted into your program
source by the C preprocessor, before the actual
compilation

� Header files typically contain declarations and
definitions of functions, types, and constants
that are used in your program.

Line 2: int main()

� This statement declares the main
function

� A C program can contain many
functions but must always have one
main function

�main () function is the starting
point of your program

Line 3: {

� This opening bracket denotes the

start of the function or body of code

� All functions should start with {

and end with }

Line 4: printf("Hello World!");

� printf is a function from a standard
C library that is used to print
strings to the standard output

� The "\n" is a special format modifier
that tells the printf to output a new
line.

� Function calls must end with a
semi-colon

Line 5: return (1);

�This closing bracket denotes the
end of the function.

Line 6: }

�This closing bracket denotes the
end of the function.

Compile your program

� You can type in your shell:

� gcc –c helloworld.c (compile)

� gcc –o helloworld helloworld.c

(compile & link)

Run your program

� In your shell, type:

./helloworld

More on functions

� A function is a self-contained module of

code that can accomplish some task.

� Example:

int myfunction(int a)

{

return (a + 1);

}

Function Structure

Return type Function name (arguments)

{

Function body

}

Assignment 1

�Create a program that prints out:

Hello everybody, my name is ….

Basic Types

� int – 2 byte integer

� long – 4 byte integer

� float – 2 byte floating point (real)

� double – 4 byte floating point

� char – single byte character

� unsigned char – single unsigned byte
(note: unsigned is a qualifier that can be applied to other types as well)

Assignment 2

� printf function can print variables

Eg. printf(“the value of A is %d\n”, A);

� Read the above example, and then write a

program that computes the sum of 2 integers

and displays the computation and result.

Sample output:

2 + 2 = 4

printf () Format Specifiers
Code Format

%c character

%d signed integers

%E scientific notation, with a uppercase "E"

%f floating point

%s a string of characters

%u unsigned integer

%X unsigned hexadecimal, with uppercase letters

%p a pointer

%% a '%' sign

\n New line character

\”

\’

Quotation characters

\l Linefeed character

\0 Null ‘character’

Other optional details can be specified, such as the

precision. A format specifier may look as follows:

% flags width .precision size type

Flag Description

+ for a number, that a sign should always be included,

even if it is positive

<sp

ace

>

space should be prepended to the output of a number

if the sign is positive. Of course this flag is ignored if

the previous flag is also used

leading zero be used for an octal number (format

specifiers o and O), a leading 0x or 0X be used for a

hexadecimal number (format specifiers x and X) or

that a decimal point always be included for the

floating point types

0 leading zeroes should be used to pad a number

float scale = 1.57f;

int num2 = 123;

int prec = 4;

printf("Scale is %7.3f\n",scale); //Scale is 1.570

printf("Scale is %5.d\n",num2); //Scale is 123

printf("Scale is %.5f\n",scale); //Scale is 1.57000

printf("Num2 is %.5d\n",num2); //Num2 is 00123

Examples:

Code Example

#include <stdio.h> /* include file for

standard i/o */

long factorial (int);/* function prototype*/

//***

// function: factorial

// purpose: compute the factorial of the

// supplied number

// inputs: int nInput

// return: long factorial value

//***

long factorial(int nInput)

{

int ctr;

long result = 1;

for(ctr = 1 ; ctr <= nInput ; ctr++)

result = result * ctr;

return (result);

}

//**

// function: main

// purpose: entry point of program

// prompts for number from user and calls

// factorial function then outputs the result

// to the screen.

// inputs: none

// return: integer result 1 = success, 0 = failure

//**

int main()

{

int number;

long fact = 1;

printf

("Enter a number to calculate it's factorial\n");

if (scanf("%d", &number) != 1)

{

printf (“Invalid number entered\n”);

printf (“usage: factorial <num>\n”);

return (0);

}

printf ("%d! = %ld\n", number, factorial(number));

return 1;

}

Introducing Debugging

�Syntax Errors

�Semantic Errors

�Runtime Errors

Common Errors

#include <stdio.h>

int main(void)

(

int n int n2 int n3;

/* this program has several errors

n = 5;

n2 = n * n;

n3 = n2 * n2;

printf(“n = %d n squared = %d n cubed = %d\n” n n2 n3);

return 0;

)

Data and C

� Programs work with data.

�A common C program works like this

� You feed data to your program.

� Your program does something with the

data.

� Your program gives the result back to you.

Example Reading Input from Keyboard

int main()

{

float weight;

scanf(“%f” &weight)

printf(“george’s weight is %f.\n” weight);

return 0;

}

Float and Int

� Bits Bytes and Words.

� The integer

� The Float

+/- 0 0 0 0 1 1 1

+/- .314159 1

Type Char

� The char type is used for storing characters such as

letters and punctuation marks.

� Char type actually stored as integer (length 1 byte)

� Example

char broiled; //declare a char variable.

broiled = ‘T’; //correct

broiled = T; //error

broiled = “T”; //error

Character strings

� An example of a string

“I am a string.”

� A character string is a series of one or more

characters.

� Strings are enclosed by double quotation

marks.

Character strings(2)

� C has no special string type

� A string is an array of chars

� Characters in a string are stored in adjacent

memory cells

� Standard C string functions depend on a null

terminated string

h i t h e r e \0

Character strings (3)

� String declaration

char name[5];

� Notice the difference

char ch;

char name[5];

� Every char of name can be accessed as name[i]

� Arrays are indexed from 0 so the first character in a

string is string[0]

Sample program

int main()

{

char name[40];

printf(“what is your name?”);

scanf(“%s” name);

printf(“hello %s.\n” name);

return 0;

}

Strings versus characters

� Character ‘x’

� String “x”

x

x \0

Common String functions

� Remember to include <string.h>

� strlen // returns the length of the string

� strcpy // string copy

� strcmp // string compare

� strcat // append one string to another

� sprintf // same as printf but prints to a string

� sscanf // same as scanf but reads from a string

Question

�What does strlen () return if applies to

the following string? Why?

“hello everybody\0 my name is dr. Evil.”

Operators
� Arithmetic

addition +

subtraction -

multiplication *

division /

modulus %

integer addition is not the same as floating point, be careful with types

� Assignment =

eg. Number = 23;

� Augmented assignment

+= -= *= /= %= &= |= ^= <<= >>=

eg.

Number += 5;

is equivalent to

Number = Number + 5;

Operators
� bitwise logic

NOT ~

AND &

OR |

XOR ^

� bitwise shifts

shift left <<

shift right >>

� boolean logic

Not !

And &&

Or ||

Example:

int num1 = 1, num2 = 2, result;

result = num1 && num2; // result = 1

result = num1 & num2; // result = 3

Note: there is no boolean type, non-zero is considered logically true

Operators
� equality testing

Equal to ==

Not equal to !=

� order relations < <= > >=

� conditional evaluation (expr) ? … result1 : result2;

example:

int num1 = 5;

result = num1==5 ? 1 : 2 // result = 1

is equivalent to

if (num1 == 5) result = 1 else result = 2;

note the difference between
num1 = 5; // assignment

num1 == 5; // logical test

� increment and decrement ++ --

order can be important: ++i and i++ are both valid

� object size sizeof () – NOT the same as strlen ()

Loops

� for loop
for (i = 0; i < max; i++)

{… body… }

� while loop
while (expression)

{… body …}

� do loop
do

{… body… }

while (expression);

Example

int main()

{

int i = 0;

while (i < 3)

{

printf(“%d “ i);

i = i + 1;

}

return 0;

}

Question

What if we delete the line?

i = i + 1;

Answer…. Infinite loop!

Next Session

� Next Session

� Friday, April 13th

� MacLab, A-level

� Regenstein Library, Room AC001

