
C Tutorial
Session #2

• Type conversions

• More on looping

• Common errors

• Control statements

• Pointers and 

Arrays

• C Pre-processor

• Makefile

• Debugging



Type Conversions

main()

{ 

int i; 

unsigned int stop_val; 

stop_val = 0; 

i = -10; 

while (i <= stop_val)

{ 

printf ("%d\n", i); 

i = i + 1; 

} 

}



Common mistake

� Example:

int n = 0;

while (n < 3)

printf(“ n is %d\n”, n);

n++;



Troubles with Truth

status = scanf(“%ld”, &num);

while (status = 1) {

printf(“please enter a number\n”);

status = scanf(“%ld”, &num);

}



The for loop

� Syntax: 

for (exp1; exp2; exp3)

� Example:

for (count = 1; count < 10; count++) 

{

printf(“count is %d\n”, count);

} 



Count by charaters

char count;

for (count = ‘a’; count <= ‘z’; count++) {

printf(“count is %c\n”, count);

} 



Nested loop

Example: 

for (row = 0; row < 10; row++) {

for (ch = ‘a’; ch < ‘f’; ch++) {

printf(“%c “, ch);

}

}



C Control Statements

� if statement

� Syntax:
if (expression) {

statements

}

else {

statements

}



Sample code

if (x > 0) {

printf(“ x is greater than 0.\n”);

} else {

printf(“ x is less than or equals to 

0.\n”);

}



Another example

int main() {

char ch;

ch = getchar();

while (ch != ‘\n’) {

putchar(ch);

ch = getchar();

}

return 0;

}



Using continue and break

ch = getchar();

while (ch != ‘\n’) 

{

if (ch == ‘q’) 

break;

if (ch == ‘$’) 

{ 

printf(“dollar!\n”); 

continue; 

}

putchar(ch);

ch = getchar();

}

printf(“finished.\n”);



Continue and break

� continue skips the rest of current iteration 

and starts the next iteration.

� break causes the program to break free of the 

loop that encloses it and to proceed to the 

next stage of the program.



Multiple choice: switch and 
break

switch (ch)

{

case ‘\n’: 

printf(“newline\n”);

break; 

case ‘q’:

exit(0);

case ‘$’: 

printf(“dollor!.\n”);

break;

default: 

putchar(ch); 

break;

}



Arrays

�An array is composed of a series of 
elements of one data type.

�An array declaration tells the compiler 
how many elements the array contains 
and what the type is for these elements.

�Example: 
float candy[365]; char code[12];



Assigning Array Values

� Initialization.
int arr[6] = {0, 1, 2, 3, 4, 5};

�Assigning values.
for (counter = 0; counter < 6; counter++) {

arr[counter] = counter;

}



Multidimensional Arrays

�An two dimension array is an array of 
one dimension arrays.

�Example: float rain[5][12];

rain is an array of five elements. Each 
element is an array of twelve float point 
numbers.



Pointers and Arrays

� Pointers provide a symbolic way to use 

address.

� Array notation is simply a disguised use of 

pointers.

rain = &rain[0] // true



Functions, Arrays and Pointers

� Suppose you want to write a function that 
operates on an array. What would the 
function call look like?
total = sum(marble);

� What would the function declaration be?
int sum(int *ar);

� NOTE: array name is the address of the first 
elements.



Pointer Operations

� Example:
int urn[5] = {1, 2, 3, 4, 5};

int *ptr1, *ptr2, *ptr3;

ptr1 = urn;

ptr2 = &urn[2];

� Question: 

if ptr1[x] == ptr2[1] is true, what is x?



C Preprocessor

� #include <string.h> (or “string.h”)
There is a difference between the < > -- look for the file in the include 

path and “ “ look first in local directory, then in the include path

� #define [name]

#define [name] value
When [name] is used it is replaced with its value

Eg. #define DEBUG

#define DEBUG 1

� #ifdef [name]

#ifndef [name]

� #endif



Examples

#ifdef DEBUG

printf ("entering main 

()\n");

#endif

…

#define TRUE 1

#define FALSE 0

#define BYTE unsigned char

BYTE success;

success = function ();

if (success == FALSE);

{

#ifdef DEBUG

printf ("error\n”);

#endif

exit (0);

}



Makefile

� The make command allows you to manage 

large programs or groups of programs.

� The make program keeps track of which 

portions of the entire program have been 

changed, compiles only those parts of the 

program which have changed since the last 

compile.



Compilation Steps

1. Compiler stage: All C language code in the 
.c file is converted into a lower-level 
language called Assembly language.

2. Assembler stage: The assembly language 
code is converted into object code.

3. Linker stage: The final stage in compiling a 
program involves linking the object code to 
code libraries and produces an executable 
file. 



Compile Multiple files

� Programmers usually divide source code into 

separate easily-manageable .c files when 

programs become large.



Separate Compilation Steps

� Compile green.o: cc -c green.c 

� Compile blue.o: cc -c blue.c 

� Link the parts together: cc green.o blue.o



Using multiple source files

� no two files have functions with the same 
name in it. 

� no two files define the same global variables. 

� To use functions from another file, make a .h
file with the function prototypes, and use 
#include to include those .h files within your 
.c files.

� At least one of the files must have a main() 
function. 



Dependencies

� Make creates programs according to 
the file dependencies.



Dependency graphs



How dependency works



How does make do it?



Translating the 
dependency graph

target : source file(s)
command (must be preceded by a tab)



Using the Makefile with 
make

� Once you have created your Makefile

and your corresponding source files, you 

are ready to use it by typing make.



Basic Debugging

� Prepare code for debugger

add –g option to compiler command

gcc –g –o <file> <file.c>

� Debug the program

gdb <file>

� Breakpoints and execution

b <line#> OR <function>

s – step

c – continue

n – next

� Look at variables

print <expr>


