
C Tutorial
Session #4

• More on Arrays and Pointers

• Memory allocation

• Structures, Unions & typedef

Review

� int iArr[30];

&iArr[0] == &iArr; // equivalent

� int (*p)[2]; // pointer to array of 2 integers

int *p[2]; // array of 2 pointers to integers

� int foo = 100;

int *bar;

bar = &foo;

*bar = 200;

What is:

1. foo; 2. &foo;

3. bar; 4. *bar;

5. &bar;

foo

bar

0x1000

0x1020

Memory

Address

Pointers to multidimensional
arrays

int Zippo[2][4];

� Zippo is the starting address of this 2-d array. It is

same as &Zippo[0].

� Zippo[0] itself is an array of 4 integers.

� Zippo[0] is same as &Zippo[0][0].

Difference between arrays and
pointers

� Array name is a constant.

� Pointer is a variable.

� Example:

char hello[] =“hello”;

char *helle = “helle”;

hello++; //illegal

helle++; //legal

Dynamic arrays

� You don’t always know your array size in

advance.

� Static arrays waste a lot memory.

� malloc() and free()

malloc ()

� Example of the usage of malloc ():

char *name;

name = (char *) malloc(length * sizeof(name));

Dynamically allocate memory

� malloc allocates a chunk of memory and

returns the starting address of the memory.

� free frees memory

� Note: you are responsible for releasing the

memory allocated by malloc function.

An example of malloc

char *name = (char *)malloc(namelen * sizeof(char));

name

Size:

namelen

Sample code

int main(){

char name[] = “I am a string.”;

char *temp;

temp = (char *)malloc((strlen(name)+1) *

sizeof(char));

strcpy(temp, name);

…

free(temp);

}

Caution: memory leak

char str1[] = “string one”;

char str2[] = “string two”;

char *temp;

temp = (char *) malloc ((strlen(str1) + 1) *

sizeof(char));

strcpy(temp, str1);

temp = (char *) malloc ((strlen(str2) + 1) *

sizeof(char));

strcpy(temp, str2);

free(temp);

Two dimensional dynamic
array

� Use pointer to pointers.

� Syntax:

<type> **name;

� Example:

int **arr;

� arr is a pointer to an integer pointer. It can be

used as a 2-d array.

Sample usage

� Suppose we need a 2-d array to store a
matrix. However, neither the column size nor
the row size of the matrix is known. Thus,
we need to use a 2-dim dynamic array.

� Code:

int **matrix;

� Question: how do we allocate 2-dim
memory.

Matrix example

int **matrix;

matrix = (int **)malloc(row * sizeof(int *));

for (i = 0; i< col; i++) {

matrix[i] = (int *)malloc(col *sizeof(int));

}

Caution: we need a for loop to free that memory

Dynamically change array size

�Sometimes we need to change array

size in the middle of programs.

�The realloc function.

�Syntax:

realloc (baseadd, newsize);

Example of using realloc

char f_name[] = “John”;

char l_name[]= “Smith”;

char *name = (char *)malloc((strlen(f_name)+1) *

sizeof(char));

strcpy(name, f_name);

name = (char *)realloc(name,

(strlen(f_name)+strlen(l_name)+1) *

sizeof(char));

strcat(name, l_name);

// memory leak…

sprintf (name, "%s, %s", l_name, f_name);

Introduction to structures

� Choosing a good way to represent data is very
important

� “A structure is a collection of one or variables,
possibly of different types, grouped together under
a single name for convenient handling.”

struct point {

int x;

int y;

};

Example: book inventory

struct book {

char title[MAX];

char author[MAX];

float value;

}

struct book library; //declare a book variable

struct book library1;

gets(library.title);

scanf(“%f”, &library.value);

struct book library2 = {"The Host",

"Meyers, Stephanie", 19.95”);

Structures (cont.)

� Operations on a structure
� copy it

� assign to it as a unit

� take its address with &

� accessing its members

� Pointers to structures
struct book library, *bk;

bk = &library;

strcpy (bk->title, "The Hunger Games”);

� Arrays of Structures
struct book library[MAX];

Unions

� Unions allow a variable to hold different types (at

different times)
union u_tag {

int ival;

float fval;

char &sval;

} u;

� Allocated to hold the largest possible value

� Accessed in same manner as structures:
printf (“string val %s”, u.sval);

printf (“int val %d”, u.ival);

typedef

� Create new data type names

typedef int Length;

Length len, maxlen, *lengths[];

typedef char *String;

typedef struct tnode *Treeptr;

typedef struct tnode { // tree node

char *word; // points to the text

int count; // number of occurences

Treeptr left; // left child

Treeptr right; // right child

} Treenode;

Treeptr talloc(void) {

return (Treeptr) malloc (sizeof (Treenode));

}

� typedef does not create a new type, only adds a new name for some

existing type

