
C Tutorial

Session #5

• File I/O

• Bit Masks, Fields & Bit Manipulations

Communicating with files

� Often times, you need read information from

a file or write information into a file.

� What is a file? Or what is a file to your C

program.

� C views a file as a continuous sequence of

bytes, each of which can be read

individually.

The text view and the binary
view

�The two views of a file are binary and
text.

� In binary view, each and every byte of
the file is accessible to a program.

� In text view, the local environment’s
representation are mapped to the C view
when a file is read.

Standard files

� C programs automatically open three files on
your behalf, standard input, standard output
and standard error output.

� Standard input, by default is your normal
input device, usually your keyboard.

� Both standard output and standard error
output, by default, are your normal output
device, usually your display screen.

The fopen function

� Syntax: fopen(char *filename, char *mode)

� Example:

FILE *fp;

if ((fp = fopen(“filename”,”r”))== NULL) {

printf(“can’t open file.\n”);

…

}

Checking command-line
arguments

� Pass arguments from shell command.

� Example:

int main(int argc, char *argv[])

� The first argument argc is the number of arguments

passed to your program.

� The array argv strores arguments. argv[0] is the

program name, argv[n] is the nth argument passed

to your program.

The getc and putc function

� Similar to getchar function, getc reads one byte
from the target file.

� In our previous example, we can use getc as
following:

FILE *fp;

…

getc(fp);

� getc returns an EOF symbol when reaches the end
of the file.

Other file I/O functions

� fprintf(FILE *, format, args..)

� fscanf(FILE *, format, args…)

� fgets(char *buf, int MAX, FILE *)

� fputs(char *buf, FILE*)

� fclose(FILE *)

The fseek function

� The fseek function enables you to treat a file like an
array.

� Syntax: int fseek(FILE *, long offset, int whence);

� fseek(fp, 0L, SEEK_SET); //go to the beginning of the file

� fseek(fp, 10L, SEEK_SET); //go 10 bytes into the file.

� fseek(fp, 2L, SEEK_CUR); //advance 2 bytes from the
current position.

� fseek(fp, -10L, SEEK_END); //back up 10 bytes from the
end of the file.

The ftell and rewind functions

� The ftell function returns the current value of

the file position indicator.

� The rewind function sets the file position

indicator to the beginning of the file stream.

� The rewind function is equivalent to:

fseek(fp, 0L, SEEK_SET);

Number Notation

� Decimal - 10

� Unsigned – 10u

� Long – 10L

� Floating Point 10.0

� Octal (Base 8) – 010 (8 decimal)

� Hexadecimal (Base 16) – 0x10 (decimal 16)

Bit fiddling

� With C, you can manipulate the individual
bits in a variable.

� Why we need to play with bits?

� Hardware devices if often controlled by sending
it one byte or two, in which each bit has a
particular meaning.

� Many compression and encryption operations
manipulate individual bits.

C’s bitwise operators

& AND

| OR

^ XOR

~ One's Complement (unary)

<< Left shift

>> Right Shift

DO NOT confuse & with &&

& is bitwise AND, && logical AND

Similarly for | and ||

Turn on 1 bit

� We can use bitwise or to turn on a bit flag.

� Sample code:

int flag;

flag = flag | 8; // turn on the forth bit from right.

Note 8 in binary is 00001000

� Similarly if we want to turn on the 1st and 3rd

bits, we can use flag = flag | 5;

Turn off 1 bit

� We can use bitwise and to turn off 1 bit.

� Sample code:

int flag;

flag = flag & (~4) // turn off the 3rd bit from
right.

� Similarly, if we want to turn off 1st, 2nd, and
4th bits from right, we can use flag = flag &
(~11);

Bit shifting

The shift operators perform appropriate shift by operator on the right to the
operator on the left. The right operator must be positive. The vacated bits
are filled with zero (i.e. There is NO wrap around).

Example:
x = 0x02; // 00000010

x >>= 2; // 00000000

x = 0x02; // 00000010

x <<= 2; // 00001000

Therefore a shift left is equivalent to a multiplication by 2

Similarly a shift right is equal to division by 2

Number << n multiplies number by 2 to the nth power.

Number >> n divides number by 2 to the nth power.

Bit fields

Struct box_props{

unsigned int opaque :1;

unsigned int fill_color :3;

unsigned int show_border :1

unsigned int border_color :3

unsigned int border_style :2

}

Examples

� Consider the following mask, and two bit strings from which we want to extract

the final bit:
mask = 0x01; // 00000001

value1 = 0x9B; // 10011011

value2 = 0x9C; // 10011100

x = mask & value1; // 0x01 (00000001)

x = mask & value2; // 0x00 (00000000)

� The zeros in the mask mask off the first seven bits and only let the last bit show

through. (In the case of the first value, the last bit is 1; in the case of the second

value, the last bit is 0.)

� Alternatively, masks can be built up by operating on several flags, usually with

inclusive OR:
flag1 = 00000001;

flag2 = 00000010;

flag3 = 00000100;

mask = flag1 | flag2 | flag3; // mask = 00000111 (0x07)

