SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-003

C STYLE GUIDE

AUGUST 1994

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL
was created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on the process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in
the Software Engineering Laboratory Series, a continuing series of reports that
includes this document.

The major contributors to this document are

Jerry Doland (CSC)
Jon Valett (GSFC)

Many people in both the Software Engineering Branch at NASA/GSFC and in the
Software Engineering Operation at CSC reviewed this document and contributed their
experiences toward making it a useful tool for Flight Dynamics Division personnel.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

SEL-94-003 i

ABSTRACT

This document discusses recommended practices and style for programmers using the
C language in the Flight Dynamics Division environment. Guidelines are based on
generally recommended software engineering techniques, industry resources, and local
convention. The Guide offers preferred solutions to common C programming issues
and illustrates through examples of C code.

SEL-94-003 ii

Style Guide

1 INTRODUCTION

000 U 0T 1 PSSR
1.2 AUGIENCE. .ottt ettt sttt
1.3 APPIOACN. ..o

2 READABILITY AND MAINTAINABILITY

2.1 Encapsulation and Information Hiding..........cccooveviiinnniiiniencee
2.2 WNITE SPACE.......i it
2.2.1 BIaNK LINES.....cuiiiiieiieie e
2.2.2 SPACING...eeiueeitieiieieesteeteatee st et et et sre e bt nne e nnes
2.2.3 INAENTALION. ..ottt
2.3 COMMENTS. ...ttt b e snbeesneas
2.4 Meaningful NamMES........ccco i
2.4.1 Standard NAMES........cccuiuiiiriiiie et
2.4.2 Variable NameS.........ccoiiiiiiiieiieie e
2.4.3 Capitalization...........ccoeeieeiieie e
2.4.4 Type and Constant Names..........ccccvevveeiieiiresiiesiee e esee e

3 PROGRAM ORGANIZATION

3.1 Program FilES.......cooiiiiiieiii e
3.2 README File. ..ottt
3.3 StANdard LIDraries.ooo e

SEL-94-003 %

Table of Contents

3.4 Header FIIES......ccviiiiiiie ettt 14

3.5 IMOUUIES. ... 15

3.6 MAKETIES ... 15

3.7 Standard Filename SUFFIXES........ccccevieieeiiiicie e 16

4 FILE ORGANIZATION 17
4.1 FilE ProlOg.....ccoiiiiiiiieiee e 18

4.2 Program Algorithm and PDL..........cccccveveieieeiese e 20

4.2.1 Sequence STateMENTS.......cuviieieiiiieiiii e 21

4.2.2 Selection Control Statements..........cccoovvveeriverieereeie e 21

4.2.3 lteration Control Statements..........cccvevvereeienie e 24

4.2.4 Severe Error and Exception Handling Statements..................... 25

4.3 INCIUdE DIrECLIVE......cciiiiiie e 27

4.4 Defines and TYPEAETS.ccuoiiiiiiiieiiee e 28

4.5 External Data Declarations and Definitions............ccccccevvvevviiverivsnnnnnnn 28

4.6 Sequence Of FUNCHIONS.........ccceiieieiiie e 28

5 FUNCTION ORGANIZATION 31
5.1 FUNCLION ProlOgS. .. .coviiiieiie ettt 31

5.2 FUNCLION AFQUMENTS.....c.viiieiiieiie ettt sra e sre e 32

5.3 External Variable Declarations............cccccccevieiiineiie i 33

5.4 Internal Variable Declarations..........c.ccccecvveiiiiiii i, 33

5.5 Statement Paragraphing.........cccoeoeieriiininieeeeee e 33

5.6 Return Statement... ... i 34

6 DATA TYPES, OPERATORS, AND EXPRESSIONS 37
6.1 VariabIES... ..o e 37

0.2 CONSLANTS......eiiiiiiiiie ettt e e 37

6.2.1 CoNSt MOAIfIr......ccveiieiice e 38

6.2.2 #define Command..........cccoveiiiiii i 38

Vi SEL-94-003

Table of Contents

6.2.3 ENUMEration TYPES.....cveiviieiiieiiie e sie et 38

6.2.4 SImple CONSLANTS......cccveiieiieiiecie e 39

6.3 Variable Definitions and Declarations.............ccccevevvevieieieesesecienns 39
B.3.1 NUMDEIS.....ociiitieiiece ettt 39
6.3.2 QUANITIEIS......eociei e 40
6.3.3 SHIUCLUIES.....ccoiiie e e 40
6.3.4 Automatic Variablesccccooveiiieiii i 40

6.4 Type Conversions and CastsS...........ccouerireerinieniniene e 41
6.5 POINTEN TYPES.. ittt 42
6.6 POINIEr CONVEISIONS......uveivieiieieeiecieesee e ete et e e sre e nee e sne e 42
6.7 Operator FOrMAatting.........cccocveeiieiiiiiiece e 42
6.8 Assignment Operators and EXPressions........cccccvvvevvveiiieesveesveesineeenns 43
6.9 Conditional EXPreSSIONS........cccveieeieiieiieiesie e 45
6.10 Precedence and Order of Evaluation.............cccocoooviveieieninne e 45
7 STATEMENTS AND CONTROL FLOW 47
7.1 SequeNnCe STAtEMENTS........ooiiiiiie et 47
7.1.1 Statement Placement..........ccccooveiiiiiic i 47

0 B = 1 (oL PR STSR 48

7.2 Selection Control StatementS.........cccevveiiieiiii i 50
T.2.0 e e 50
T7.2.2 IFEISE...oi i 50

7.2.3 EISE I 51
7.2.4 Nested If StatementS.......cccoecveieeiier e 51
725 SWICN ...t 53

7.3 lteration Control StatemeNts...........cccvvevieeiie i 53
7.3.1 WHhIl..oooici e 54
T.3.2 FOF e 54
7.3.3 DOWNIIE....oiiee e 55

7.4 Severe Error and Exception Handling..........cccooeveiiiiiniiiiincecee 55
7.4.1 Gotos and Labels.........ccccooviiieiiii 55

TA4.2 BIEAK...oiii ittt 55

SEL-94-003 vii

Table of Contents

8 PORTABILITY AND PERFORMANCE 57
8.1 Guidelines for Portability...........ccccooviveiiiiiicc e, 57
8.2 Guidelines for Performance...........ccccoveririeniniiesiee e 58

9 C CODE EXAMPLES 59
0.1 MAKETHE. ..o 60
9.2 CProgram File: RF_GetReferenCe.C.......cccuvveveierienieeneneere e, 64
9.3 Include File: HD_reference.N..........ccooeveiiiieie i 79
FIGURES
Figure 1 Information HidiNg........cccooeriiiiiiiiiieeesesee e 4
Figure 2 Program OrganiZation.............ccevereseeriesesieseesesieseeseessesesseeseeseas 13
Figure 3 Standard Filename SUFfiXeS..........ccoovevveveiiiiie i 16
Figure 4 File Organization SChema.........cccooveiiiii i 17
Figure 5 Program File Prolog CONtents...........ccceveiieieniiniieiecee e 18
Figure 6 Header File Prolog.........ccooiiiiiiiiiiiiise e 20
Figure 7 Function Organization SChema..........c.ccocveiiiiiiicneneicecc e 31
BIBLIOGRAPHY 83
INDEX 85

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

viii SEL-94-003

11

INTRODUCTION

“Good programming style begins with the
effective organization of code. By using a
clear and consistent organization of the
components of your programs, you make
them more efficient, readable, and
maintainable.”

- Steve Oualline, C Elements of Style

Purpose

This document describes the Software Engineering Laboratory (SEL) recommended
style for writing C programs, where code with “good style” is defined as that which is

1.2

Organized

Easy to read

Easy to understand
Maintainable
Efficient

Audience

This document was written specifically for programmers in the SEL environment,
although the majority of these standards are generally applicable to all environments.
In the document, we assume that you have a working knowledge of C, and therefore
we don’t try to teach you how to program in C. Instead, we focus on pointing out
good practices that will enhance the effectiveness of your C code.

1.3

Approach

This document provides guidelines for organizing the content of C programs, files, and
functions. It discusses the structure and placement of variables, statements, and

SEL-94-003 1

Introduction

comments. The guidelines are intended to help you write code that can be easily read,
understood, and maintained.

» Software engineering principles are discussed and illustrated.
» Key concepts are highlighted.

» Code examples are provided to illustrate good practices.

2 SEL-94-003

READABILITY AND
MAINTAINABILITY

This section summarizes general principles that maximize the
readability and maintainability of C code:

» Organize programs using encapsulation and information
hiding techniques.

» Enhance readability through the use of white space.

» Add comments to help others understand your program.
» Create names that are meaningful and readable.

» Follow ANSI C standards, when available.

2.1 Encapsulation and Information Hiding

Encapsulation and information hiding techniques can help you write better organized
and maintainable code. Encapsulation means grouping related elements. You can
encapsulate on many levels:

» Organize a program into files, e.g., using header files to build a cohesive
encapsulation of one idea.

» Organize files into data sections and function sections.
» Organize functions into logically related groups within individual files.

» Organize data into logical groups (data structures).

Information hiding refers to controlling the visibility (or scope) of program
elements. You can use C constructs to control the scope of functions and data. For
example:

» Encapsulate related information in header files, and then include those header
files only where needed. For example, #include <time.h> would be inserted
only in files whose functions manipulate time.

» A variable defined outside the current file is called an external variable. An
external variable is only visible to a function when declared by the extern
declaration, which may be used only as needed in individual functions.

SEL-94-003 3

Readability and Maintainability

Figure 1 illustrates the information hiding concept. The code consists of two files,
three functions, and six variables. A variable name appears to the right of each line
that is within its scope.

File Code Scope
X.C #include “local.h”
inta = 2;
static int b = 3; a
main() ab
{ ab
intc=a+ b; ab
abc
xsub(c); abc
} abc
xsub(d) ab
int d; ab
{ abd
inte=7*d; abd
ab de
ysub(e); ab de
} ab de
y.C #include “local.h”
ysub(f)
int f;
{ f
extern int a;
a f
printf(“%d\n”, a + f); a f
} a f

Figure 1 Information Hiding

2.2 White Space

Write code that is as easy as possible to read and maintain (taking into consideration
performance tradeoffs for real-time systems when it is appropriate). Adding white
space in the form of blank lines, spaces, and indentation will significantly improve the
readability of your code.

4 SEL-94-003

Readability and Maintainability

2.2.1 Blank Lines

A careful use of blank lines between code “paragraphs” can greatly enhance
readability by making the logical structure of a sequence of lines more obvious. Using
blank lines to create paragraphs in your code or comments can make your programs
more understandable. The following example illustrates how the use of blank lines
helps break up lines of text into meaningful chunks.

Example: code paragraphing
#define LOWER O
#define UPPER 300
#define STEP 20

main() /* Fahrenheit-Celsius table */

{
int fahr;
for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf(“%4d %6.1F\n”, fahr, (5.0/9.0)*(fahr - 32));
}

However, overuse of blank lines can defeat the purpose of grouping and can actually
reduce readability. Therefore, use a single blank line to separate parts of your
program from one another.

2.2.2 Spacing

Appropriate spacing enhances the readability of lexical elements such as variables and
operators. The following examples illustrate how to use individual spaces to improve
readability and to avoid errors. The second example is not only harder to read, but the
spacing introduces an error, where the operator /* will be interpreted by the compiler
as the beginning of a comment. Put one space after a comma to improve readability,
as shown in the third example below.

Example: good spacing
*average = *total / *count; /* compute the average */
Example: poor spacing

*average=*total/*count; /* compute the average */
N begin comment end comment”™

Example: comma spacing

concat(sl, s2)

SEL-94-003 5

Readability and Maintainability

2.2.3 Indentation

Use indentation to show the logical structure of your code. Research has shown that
four spaces is the optimum indent for readability and maintainability. However, in
highly nested code with long variable names, four-space indentation may cause the
lines of code to overrun the end of the line. Use four spaces unless other
circumstances make it unworkable.

Example: four-space indentation

main()

{

int c;

c = getchar(Q);
while (c!= EOF)

{
putchar(c);
c = getchar(Q);

2.3 Comments

Judiciously placed comments in the code can provide information that a person could
not discern simply by reading the code. Comments can be added at many different
levels.

» At the program level, you can include a README file that provides a general
description of the program and explains its organization.

» Atthe file level, it is good practice to include a file prolog that explains the
purpose of the file and provides other information (discussed in more detail in
Section 4).

» At the function level, a comment can serve as a function prolog.

» Throughout the file, where data are being declared or defined, it is helpful to
add comments to explain the purpose of the variables.

Comments can be written in several styles depending on their purpose and length.
Use comments to add information for the reader or to highlight sections of code.
Do not paraphrase the code or repeat information contained in the Program Design
Language (PDL).

6 SEL-94-003

Readability and Maintainability

This section describes the use of comments and provides examples.

* Boxed comments—Use for prologs or as section separators

* Block comments—Use at the beginning of each major section of the code as a
narrative description of that portion of the code.

» Short comments—Write on the same line as the code or data definition they
describe.

* Inline comments—Write at the same level of indentation as the code they
describe.

Example: boxed comment prolog

/***

* FILE NAME *
* *
* PURPOSE *
* *

***/

Example: section separator

/***/

Example: block comment

/*
* Write the comment text here, in complete sentences.
* Use block comments when there is more than one
* sentence.
*/

Example: short comments

double ieee r[]; /* array of IEEE real*8 values */
unsigned char ibm_r[]; /* string of IBM real*8 values */
int count; /* number of real*8 values */

» Tab comment over far enough to separate it from code statements.

» If more than one short comment appears in a block of code or data
definition, start all of them at the same tab position and end all at the same
position.

SEL-94-003 7

Readability and Maintainability

Example: inline comment

switch (ref_type)

{
/* Perform case for either s/c position or velocity
* vector request using the RSL routine c_calpvs */
case 1:
case 2:
case n:
}

In general, use short comments to document variable definitions and block comments
to describe computation processes.

Example: block comment vs. short comment
preferred style:

/*
* Main sequence: get and process all user requests
*/

while (I FfinishQ)
{
inquire(Q;
process();

}

not recommended:

while (Ifinish()) /* Main sequence: */
{ /> */
inquire(Q; /* Get user request */
process(Q); /* And carry it out */
3} /* As long as possible */

2.4 Meaningful Names

Choose names for files, functions, constants, or variables that are meaningful and
readable. The following guidelines are recommended for creating element names.

8 SEL-94-003

Readability and Maintainability

24.1

Choose names with meanings that are precise and use them consistently
throughout the program.

Follow a uniform scheme when abbreviating names. For example, if you have
a number of functions associated with the “data refresher,” you may want to
prefix the functions with “dr_".

Avoid abbreviations that form letter combinations that may suggest
unintended meanings. For example, the name “inch” is a misleading
abbreviation for “input character.” The name “in_char” would be better.

Use underscores within names to improve readability and clarity:
get_best_fit_model
load_best_estimate_model

Assign names that are unique (with respect to the number of unique characters
permitted on your system).

Use longer names to improve readability and clarity. However, if names are
too long, the program may be more difficult to understand and it may be
difficult to express the structure of the program using proper indentation.

Names more than four characters in length should differ by at least two
characters. For example, “systst” and “sysstst” are easily confused. Add
underscores to distinguish between similar names:

systst sys_tst

sysstst sys_s_tst

Do not rely on letter case to make a name unique. Although C is case-
sensitive (i.e., “LineLength” is different from “linelength” in C), all names
should be unique irrespective of letter case. Do not define two variables with
the same spelling, but different case.

Do not assign a variable and a typedef (or struct) with the same name, even
though C allows this. This type of redundancy can make the program difficult
to follow.

Standard Names

Some standard short names for code elements are listed in the example below. While
use of these names is acceptable if their meaning is clear, we recommend using longer,
more explicit names, such as “buffer_index.”

SEL-94-003 9

Readability and Maintainability

Example: standard short names

c characters
I, J, kindices

n counters
p,q pointers
S strings

Example: standard suffixes for variables

_ptr pointer
_file variable of type file*
_fd file descriptor

2.4.2 VariableNames

When naming internal variables used by a function, do not duplicate global variable
names. Duplicate names can create hidden variables, which can cause your program
not to function as you intended. In the following example, the internal variable “total”
would override the external variable “total.” In the corrected example, the internal
variable has been renamed “grand_total” to avoid the duplication.

Example: hidden variable

int total;
int funcl(void)

{

float total; /* this 1s a hidden variable */

}

Example: no hidden variable

int total;
int funcl(void)

{

float grand_total; /* internal variable is unique */

}

In separate functions, variables that share the same name can be declared. However,
the identical name should be used only when the variables also have the identical
meaning. When the meanings of two variables are only similar or coincidental, use
unique names to avoid confusion.

10 SEL-94-003

Readability and Maintainability

2.4.3 Capitalization

The following capitalization style is recommended because it gives the programmer as
well as the reader of the code more information.

» Variables: Use lower-case words separated by underscores.

* Function names: Capitalize the first letter of each word; do not use
underscores.

» Constants: Use upper-case words separated by underscores.

* C bindings: Use the letter “c” followed by an underscore and the binding
name.

Example: capitalization style

open_databasevariables

ProcessError function names
MAX_COUNT constants
c_ephemrd C bindings

2.4.4 Typeand Congant Names

* Type names (i.e., created with typedef): Follow the naming standards for
global variables.

* Enumeration types (declared using enum) and constants declared using
const: Follow the naming conventions for constants.

SEL-94-003 11

PROGRAM
ORGANIZATION

This section discusses organizing program code into files. It
points out good practices such as grouping logically related
functions and data structures in the same file and controlling the
visibility of the contents of those files. Figure 2 illustrates the
organizational schema that the discussion will follow.

Program README
Standard libraries <stdio.h>

<math.h>
Header files “globals.h”
“types.h”
Program files program_file.c
File prolog

Usage and operating instructions
Header file includes
External definitions and declarations
Functions
Function prolog
Function parameters
Internal definitions and declarations
Statements
Operators
Expressions
More external data
More functions
Module files module_file.c
Compilation utilities Makefile

Figure 2 Program Organization

3.1 Program Files

A C program consists of one or more program files, one of which contains the main()
function, which acts as the driver of the program. An example of a program file is

SEL-94-003 13

Program Organization

given in Section 9. When your program is large enough to require several files, you
should use encapsulation and data hiding techniques to group logically related
functions and data structures into the same files. Organize your programs as follows:

* Create a README file to document what the program does.

» Group the main function with other logically related functions in a program
file.

» Use module files to group logically related functions (not including the main
function).

» Use header files to encapsulate related definitions and declarations of variables
and functions.

» Write a Makefile to make recompiles more efficient.

3.2 README File

A README file should be used to explain what the program does and how it is
organized and to document issues for the program as a whole. For example, a
README file might include

» All conditional compilation flags and their meanings.
* Files that are machine dependent.
» Paths to reused components.

3.3 SandardLibraries

A standard library is a collection of commonly used functions combined into one file.
Examples of function libraries include “stdio.h” which comprises a group of
input/output functions and “math.h” which consists of mathematical functions.
When using library files, include only those libraries that contain functions that your
program needs. You may create your own libraries of routines and group them in
header files.

3.4 Heade Files

Header files are used to encapsulate logically related ideas; for example the header file
“time.h” defines two constants, three types, and three structures, and declares seven
functions needed to process time. Header files may be selectively included in your
program files to limit visibility to only those functions that need them.

14 SEL-94-003

Program Organization

Header files are included in C source files before compilation. Some, such as “stdio.h”
are defined system-wide, and must be included by any C program that uses the
standard input/output library. Others are used within a single program or suite of
programs. An example of a header file is given in Section 9.

» Use #include <system_name> for system include files.
e Use #include “user_file” for user include files.

» Contain in header files data definitions, declarations, typedefs, and enums that
are needed by more than one program.

» Organize header files by function.
» Put declarations for separate subsystems in separate header files.

» If aset of declarations is likely to change when code is ported from one
platform to another, put those declarations in a separate header file.

* Avoid private header filenames that are the same as library header filenames.
For example, the statement #include <math.h> will include the standard library
math header file if the intended one is not found in the current directory.

* Include header files that declare functions or external variables in the file that
defines the function or variable. That way, the compiler can do type checking
and the external declaration will always agree with the definition.

* Do not nest header files. Use explicit #include statements to include each
header file needed in each program file.

* Inthe prolog for a header file, describe what other headers need to be included
for the header to be functional.

3.5 ModuleFiles

A module file contains the logically related functions, constants, types, data
definitions and declarations, and functions. Modules are similar to a program file
except that they don’t contain the main(') function.

3.6 Makefiles

Makefiles are used on some systems to provide a mechanism for efficiently
recompiling C code. With makefiles, the make utility recompiles files that have been
changed since the last compilation. Makefiles also allow the recompilation commands
to be stored, so that potentially long cc commands can be greatly abbreviated. An
example of a Makefile is given in Section 9. The makefile

» Lists all files that are to be included as part of the program.

SEL-94-003 15

Program Organization

» Contains comments documenting what files are part of libraries.

» Demonstrates dependencies, e.g., source files and associated headers using
implicit and explicit rules.

3.7 Standard Filename Suffixes

The suggested format for source code filenames is an optional prefix (e.g., to indicate
the subsystem), a base name, and an optional period and suffix. The base name
should be unique (length may vary depending on your compiler; some limit filenames
to eight or fewer characters) and should include a standard suffix that indicates the file
type. Some compilers and tools require certain suffix conventions for filenames.
Figure 3 lists some standard suffixes; or use those dictated by your compiler.

File Type Standard Suffix
C source file .C
Assembler source .S
Relocatable object .0

Include header .h

Yacc source y

Lex source N

Loader output file .out
Makefile .mak
Linker response files .Ink or .rsp

Figure 3 Standard Filename Suffixes

16 SEL-94-003

FILE
ORGANIZATION

The organization of information within a file is as important to
the readability and maintainability of your programs as the
organization of information among files. In this section, we will
discuss how to organize file information consistently. Figure 4
provides an overview of how program file and module
information should be organized.

File Prolog, including the algorithm expressed in PDL
Usage and Operating Instructions, if applicable for program files only

Header File Includes, in this sequence:
#include <stdio.h> (or <stdlib.h>)
#include <other system headers>
#include “user header files”

Defines and Typedefs that apply to the file as a whole, including:
enums
typedefs
constant macro defines
function macro defines

External Data Declarations used by this file
extern declarations of variables defined in other files
non-static external definitions used in this file (and optionally
in others if they are declared in those files using extern)
static external definitions used only in this file

Functions
function prolog
function body

More External Data Declarations used from point of declaration to end of file

More Functions

Figure 4 File Organization Schema

SEL-94-003 17

File Organization

4.1 FileProlog

A file prolog introduces the file to the reader. Every file must have a prolog. Figure 5
is an example of a prolog outline; field values are described below.

/*************************************7\'*7\'7\'7\'*7\'************************

* FILE NAME:

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PURPOSE:

FILE REFERENCES:

Name 1/70 Des

EXTERNAL VARIABLES:
Source: < >

Name Type 170 Des

EXTERNAL REFERENCES:

Name Description

ABNORMAL TERMINATION CONDITIONS, ERROR AND

ASSUMPTIONS, CONSTRAINTS, RESTRICTIONS:

NOTES:

REQUIREMENTS/FUNCTIONAL SPECIFICATIONS REF

DEVELOPMENT HISTORY:

Date Author Change 1d Release

ALGORITHM (PDL)

cription

cription

WARNING MESSAGES:

ERENCES:

Description Of Change

Ok ok % % b b ok ok ok ok & ok ok ok %k ok ok % % ok ok % % ok o o & F o * %

*************************************7\'*7\'7\'7\'*7\'***********************/

Figure 5 Program File Prolog Contents

File Name—Specify the name of the file.

Purpose— Briefly state the purpose of the unit.

18

SEL-94-003

File Organization

* File References—Specify the name, 1/0O, and description of files used by
functions within this file. If the file does not have file references, indicate so
by entering “none.”

» External Variables—Specify the source, name, type, 1/0O, and description of
variables being used by the unit that do not come in through the calling
sequence. If the unit does not have external variables, indicate so by entering
llnone.ﬂ

» External References—Specify the exact name of each unit called or invoked
by this unit, followed by a one-line description of the unit. If the unit does
not have external references, indicate so by entering “none.”

* Abnormal Termination Conditions, Error and Warning Messages—
Describe the circumstances under which the unit terminates abnormally. List
error messages that this unit issues and briefly explain what triggers each.

* Assumptions, Constraints, Restrictions—Describe the assumptions that
are important to the design and implementation of the unit (e.g., “It is assumed
that all input data have been checked for validity.”) Include descriptions of
constraints and restrictions imposed by the unit (e.g., “The unit must
complete its execution within 75 microseconds.”) This section contains
information that explains the characteristics and peculiarities of the unit.

» Notes—Specify any additional information needed to understand the file’s
data or functions.

* Requirements/Functional Specifications References—Provide traceability
between requirements and specifications and implementation.

» Development History—Outline the file’s development history:
- Date, day, month, and year of the change
- Author, author of the current implementation or change to the unit

- Change Id, an identification number for the change; e.g., if the change is
related to a numbered SPR, that number may be used to correlate the
change to the SPR

- Release, current software release and build in abbreviated form
- Description of Change, brief narrative describing the change

» Algorithm (PDL)—Describe the algorithm used in the program in PDL
format. See Section 4.2 for a detailed discussion of algorithm/PDL.

SEL-94-003 19

File Organization

Header files (non-program files) such as those containing global definitions,
prototypes, or typedefs, should have an abbreviated prolog as shown in Figure 6.

/**

* NAME:
PURPOSE:
GLOBAL VARIABLES:

Variable Type Description

DEVELOPMENT HISTORY:

Date Author Change 1Id Release Description OFf Change

FooX % 3k ok ok Ok X X X % ok F
FooX % % ok Ok Ok X X X X % Ok F

***l

Figure 6 Header File Prolog

4.2 Program Algorithm and PDL

This section of the file prolog describes the overall algorithm of the program or any
special or nonstandard algorithms used. This description in the prolog does not
eliminate the need for inline comments next to the functions. In fact, adding
comments to your functions is recommended to help others understand your code.

In the SEL environment, programmers follow a prescribed PDL style which is
documented both in the Programmer's Handbook for Flight Dynamics Software
Development as well as CSC’s SSDM (see Bibliography). The PDL constructs are
summarized here, along with the corresponding C code. These guidelines are
consistent with the Programmer's Handbook.

PDL describes the processing and control logic within software units through the use
of imperative English phrases and simple control statements. Follow these general
guidelines when creating PDL.

* Indent by four spaces the statements defining the processing to occur within a
PDL control structure (unless the code is highly nested and it would run off
the right side of the page).

» Within a control structure, align each PDL control structure keyword (e.g.,
align the IF, ELSE, etc.). Also align each embedded statement.

20 SEL-94-003

File Organization

» Ifasingle PDL statement spans multiple print lines, begin each statement
continuation line one space to the right of the parent line.

PDL includes four types of statements, which are described in detail in the paragraphs
to follow:

* Sequence
« Selection Control
e lteration Control

» Severe Error and Exception Handling

4.2.1 Seguence Statements

A PDL sequence statement describes a processing step that does not alter logic flow.
Specify this type of PDL statement as a declarative English-language sentence
beginning with a single imperative verb followed by a single direct object.

verb object

Assignment statements may be used only in the event that mathematical formula must
be specified.

C=A+8B

To call a unit, use a verb (e.g., CALL) followed by the unit name. The unit name may
be followed by a list of descriptive parameters from the calling sequence to that unit
or by a phrase describing the function or purpose of the unit being called.

CALL <unit name>

To signal the end of processing within a unit, use the verb RETURN. A return
statement implies an immediate return to the calling entity.

RETURN

4.2.2 Sdection Control Statements

Selection control statements define the conditions under which each of several
independent processing paths is executed. There are three PDL selection control
structures: IF THEN ELSE, IF THEN, and CASE. Each of them is shown below in
its PDL format and with an example of corresponding C code.

SEL-94-003 21

File Organization

4221 IFTHEN ELSE
The basic format of an if then else statement is:

IF condition THEN
true processing
ELSE
false processing
ENDIF

Example: PDL

IF shuttle and payload mode THEN

CALL addstr to display shuttle title
ELSE IF freeflyer only mode THEN

CALL addstr to display ff title
ELSE

CALL addstr to display both titles
ENDIF

Example: C code

if (objdisp == SHUT_PAYLOAD)
addstr("'SHUTTLE DATA'™);
else if (objdisp == FF)
addstr("'FREEFLYER DATA™);
else
addstr("'SHUTTLE/FF DATA'™);

4222 IFTHEN
The general format of an if then statement is:

IF condition THEN
true processing
ENDIF

Example: PDL

IF offset between request time and time of last calculated

s/c position and velocity vectors exceeds wait time THEN
COMPUTE elapsed seconds between epoch time and request
time

ENDIF

Example: C code

if ((t_request - t_rv_ref) > t wait)
eptime = t_request - orbital_t_epoch;

22 SEL-94-003

File Organization

4.2.2.3 CASE
The general format of a case statement is:

DO CASE of (name)

CASE 1 condition:
case 1 processing

CASE 2 condition:
case 2 processing

CASE n condition:
case n processing
ELSE (optional)
else-condition processing
ENDDO CASE

OTHERWISE can be substituted for the ELSE keyword.

Example: PDL

DO CASE of axes color
black:
set color to black
yellow:
set color to yellow
red:
set color to red
OTHERWISE:
set color to green
ENDDO CASE

Example: C code

switch (axescolor)
{
case "B":
color = BLACK;
break;
case "Y":
color
break;
case "R":
color = RED;
break;
default:
color = GREEN;
break;

YELLOW;

SEL-94-003

23

File Organization

4.2.3 lteration Control Satements

Iteration control statements specify processing to be executed repeatedly. There are
three basic iteration control structures in PDL: DO WHILE, DO FOR, and DO

UNTIL.

4.23.1 DO WHILE

The general format of a do while statement is:

DO WHILE *continue loop"™ condition true

true processing
ENDDO WHILE

Example: PDL
DO WHILE ui buffer not empty
CALL process_ui iIssue requests
ENDDO WHILE
Example: C code

while (ui_buf I= EMPTY)
process _ui(ui_buf, num);

4.2.3.2 DO FOR
The general format of a do for statement is:
DO FOR specified discrete items
loop processing
ENDDO FOR
Example: PDL
DO FOR each axis view (X, Y, 2)
CALL setview to create view
ENDDO FOR
Example: C code

for (i=0; 1 < 4; i++)
setview(sys, 1);

24

SEL-94-003

File Organization

4.2.3.3 DO UNTIL
The general format of a do until statement is:
DO UNTIL "exit loop™ condition true
loop processing
ENDDO UNTIL
Example: PDL
DO UNTIL no ui requests remain
CALL process_ui to issue requests
ENDDO UNTIL
Example: C code
do

process _ui(ui_buf, num);
while (ui_count = 0);

4.2.4 SevereError and Exception Handling Statements

When a serious error or abnormal situation occurs several levels deep in if or do
statements, you may want simply to set an error flag and return to the caller. Using
only the constructs described so far, the choices are limited to setting an abort flag and
checking at each level of nesting. This can quickly complicate an otherwise clean
design. Two PDL statements are available to aid in the handling of severe errors and

exceptions: ABORT to (abort_label) and UNDO.

4241 ABORT

ABORT to is used to jump to a named block of processing at the end of the routine.
The block’s purpose is to set a fatal error indication and exit the routine. Placing all
abort processing at the end of the routine helps all abnormal condition logic to stand

out from the normal processing.

Example: PDL

DO WHILE more records remain to be processed

read next record from file

IF an invalid record is encountered

ABORT to INV_REC_FND
ENDIF

(cont’d next page)

SEL-94-003

25

File Organization

Example: ABORT PDL (cont’d)

(process this record)
ENDDO WHILE

RETURN
INV_REC_FND:
inform user of the invalid record just found

set invalid record indicator
RETURN

In C, you use a goto statement to exit out of nested loops. Note that you should use
goto statements only for unusual circumstances. In most cases, it is possible to use
structured code instead of using a goto. The two examples below show the same
scenario using structured code and using a goto statement.

Example: structured code

while (... && no_error)
for (...)
if (disaster)
error = true;
if error
error_processing;

Example: goto statement

while (...)
for (...)
if (disaster)
goto error;
error:
error_processing;

4.2.42 UNDO

UNDO is used within a do (while, for, until) construct to terminate the current loop
immediately. That is, processing jumps to the statement following the ENDDO of
the current do construct. In C, you could use a break statement to exit out of an inner
loop. If you can avoid the use of breaks, however, do so.

26 SEL-94-003

File Organization

Example: PDL

DO WHILE more records remain to be processed
read next record from file
IF an invalid record is encountered
UNDO
ENDIF
(process this record)
ENDDO WHILE

Example: C code with break statement

while <more records remain to be processed>

{
read next record from file
if <an invalid record is encountered>
break;
process this record
3

Example: C code with no break statement

while (more records remain to be processed && no_error)

{
read next record from file
if <an invalid record is encountered>
error = true;
else
process this record
3

4.3 IncludeDirective

To make header file information available to your program files, you must specifically
include those header files using the #include preprocessor directive. For optimum
efficiency and clarity, include only those header files that are necessary.

» |f the reason for the #include is not obvious, it should be commented.
» The suggested file order is:

#include <stdio.h> (or <stdlib.h>)
#include <other system headers>
#include "user header files"

SEL-94-003 27

File Organization

4.4

Definesand Typedefs

After including all necessary header files, define constants, types, and macros that
should be available to the rest of the file (from the point of declaration to the end of
the file). Include the following, in the sequence shown:

4.5

Enums

Typedefs

Constant macros (#define identifier token-string)

Function macros (#define identifier(identifier, ..., identifier) token-string)

External Data Declar ations and Definitions

After defining constants, types, and macros, you should next have a section in your
file to declare external variables to make them visible to your current file. Define
those variables that you want to be available (“global”) to the rest of the file. The
suggested sequence for declaring and defining external data is:

4.6

Extern declarations of variables defined in other files

Non-static external definitions used in this file (and, optionally, in others if
they are declared in those files using the extern declaration)

Static external definitions used only in this file

Sequence of Functions

This section provides general guidelines for arranging functions in the program file.
The organization of information within functions is described in Section 5.

If the file contains the main program, then the main() function should be the
first function in the file.

Place logically related functions in the same file.
Put the functions in some meaningful order.

- A breadth-first approach (functions on a similar level of abstraction
together) is preferred over depth-first (functions defined as soon as
possible before or after their calls).

- If defining a large number of essentially independent utility functions, use
alphabetical order.

To improve readability, separate functions in the same file using a single row
of asterisks.

28

SEL-94-003

File Organization

» Place functions last in a program file, unless (due to data hiding) you need to

declare external variables between functions.

Example: functions with separators

/**/

main prolog
main body

/**/

function_a prolog
function_a body

/**/

function_b prolog
function_b body

/**/

Example: functions with an external variable

/**/

funcl(Q

/**/

/* The following external variable will be available
/* to func2 but not to funcl */

int count;

/**/

func2()
{

}

SEL-94-003

29

FUNCTION
ORGANIZATION

This section discusses guidelines for organizing information
within functions. Figure 7 provides an overview of how
information should be organized within functions.

Function prolog
Name of the function
Arguments of the function
Return value of the function
Function argument declarations
External variable declarations
Internal variable declarations
Automatic internal variable definitions
Static internal variable definitions
Statement “paragraphs” (major sections of the code)
Block comment introducing the algorithm to be performed by
the group of statements
Statements (one per line)
Return statement

Figure 7 Function Organization Schema

5.1 Function Prologs

Every function should have a function prolog to introduce the function to the reader.
The function prolog should contain the following information:
* Function name
- One or more words all in lower case and separated by underscores

- Upper case OK if name includes a proper noun (e.g.,
Gaussian_distribution)

- Followed by brief descriptive comment
* Arguments listed one per line with the type, 1/0, and a brief description

* Return value describes what the function returns

SEL-94-003 31

Function Organization

Example: function prolog

/**

* *
* FUNCTION NAME: *
* *
* ARGUMENTS: *
* *
* ARGUMENT TYPE 170 DESCRIPTION *

e —_———— e e *

* *
* RETURNS: *
* *

***/

For a function with a non-boolean return value or no return value (a return of void),
the name should be an imperative verb phrase describing the function’s action, or a
noun phrase. For a function that returns a boolean value, its name should be a
predicate-clause phrase.

Example: imperative verb phrase

obtain_next_token
increment_line_counter

Example: noun phrase

top_of_stack
sensor_reading

Example: predicate-clause phrase

stack_is_empty
file_is_saved

5.2 Function Arguments

Declare function arguments when the function is defined (even if the type is integer).
Define functions arguments beginning in column 1. Note that arguments are explained
in the function prolog, and therefore do not require explanatory comments following
the function declaration.

32 SEL-94-003

Function Organization

Example: function argument declarations

int getline (char *str, int length)
{

}

5.3 External Variable Declarations
Declare external variables immediately after the opening brace of the function block.
Example: external variable declaration

char *save_string(char *string)

{

extern char *malloc();

5.4 Internal Variable Declarations

Internal variables—i.e., those used only by the function (also known as local
variables)—should be defined after the external variables. Follow these guidelines for
internal-variable declarations:

» Align internal variable declarations so that the first letter of each variable name
is in the same column.

» Declare each internal variable on a separate line followed by an explanatory
comment.

- The only exception is loop indices, which can all be listed on the same line
with one comment.

» Ifagroup of functions uses the same parameter or internal variable, call the
repeated variable by the same name in all functions.

» Avoid internal-variable declarations that override declarations at higher levels;
these are known as hidden variables. See Section 2.4.2 for a discussion of
hidden variables.

5.5 Statement Paragraphing

Use blank lines to separate groups of related declarations and statements in a function
(statement “paragraphing”) to aid the reader of the code. In addition, inline
comments can be added to explain the various parts of the function.

SEL-94-003 33

Function Organization

Example: statement paragraphing

char *save_string(char *string)

{

register char *ptr;
/*

* iFf allocation of the input string is successful,

* save the string and return the pointer; otherwise,
* return null pointer.

*/

if ((ptr = (char *) malloc(strlen(string) + 1)) I=
(char *) NULL)

strcpy(ptr, string);

return(ptr);

5.6 Return Statement

The return statement is the mechanism for returning a value from the called function

to its caller. Any expression can follow return:

return (expression)

» Using an expression in the return statement may improve the efficiency of the

code. Overdoing its use, however, increases the difficulty of debugging.

* Do not put multiple return and exit statements in a function, unless following

this rule would result in convoluted logic that defeats the overriding goal of
maintainability.

» Always declare the return type of functions. Do not default to integer type
(int). If the function does not return a value, then give it return type void.

» Assingle return statement at the end of a function creates a single, known point

which is passed through at the termination of function execution.

» The single-return structure is easier to change. If there is more to do after a
search, just add the statement(s) between the for loop and the return.

34 SEL-94-003

Function Organization

Example: single return

found = FALSE;
for (i=0 ; i<max && !found
it (vecl[i] == key)
found = TRUE;
return(found);

; I+4)

Example: multiple returns

for (i=0 ; i<max ; i++)
it (vec[i] == key)
return(TRUE) ;
return(FALSE) ;

SEL-94-003

35

DATA TYPES, OPERATORS,
AND EXPRESSIONS

This section provides examples of the proper way to format
constant and variable definitions and declarations and discusses
data encapsulation techniques. There are several general
guidelines to follow when working with types:

» Define one variable or constant per line.
» Use short comments to explain all variables or constants.
» Group related variables and constants together.

6.1 Variables

When declaring variables of the same type, declare each on a separate line unless the
variables are self-explanatory and related, for example:

int year, month, day;
Add a brief comment to variable declarations:

int x; /* comment */
int y; /* comment */

Group related variables. Place unrelated variables, even of the same type, on separate
lines.

int x, y, z;
int year, month, day;

6.2 Congants

When defining constants, capitalize constant names and include comments. In
constant definitions, align the various components, as shown in the examples below.
In ANSI C, there are several ways to specify constants: const modifier, #define
command, and enumeration data types.

SEL-94-003 37

Data Types, Operators, and Expressions

6.2.1 Cong Modifier
Use the const modifier as follows:

const int SIZE 32; /* size In inches */
const int SIZE 16 + 16; /* both evaluate to the number 32 */

6.2.2 #defineCommand

The #define preprocessor command instructs the preprocessor to replace subsequent
instances of the identifier with the given string of tokens. It takes the form:

#define IDENTIFIER token-string

In general, avoid hard-coding numerical constants and array boundaries. Assign each a
meaningful name and a permanent value using #define. This makes maintenance of
large and evolving programs easier because constant values can be changed uniformly
by changing the #define and recompiling.

#define NULL 0
#define EOS "\0"
#define FALSE O
#define TRUE 1

Using constant macros is a convenient technique for defining constants. They not
only improve readability, but also provide a mechanism to avoid hard-coding
numbers.

6.2.3 Enumeration Types

Enumeration types create an association between constant names and their values.
Using this method (as an alternative to #define), constant values can be generated, or
you can assign the values. Place one variable identifier per line and use aligned braces
and indentation to improve readability. In the example below showing generated
values, low would be assigned 0, middle 1, and high 2. When you assign values
yourself, align the values in the same column, as shown in the second example.

Example: generated values

enum position

{
LOW,
MIDDLE,
HIGH

¥

38 SEL-94-003

Data Types, Operators, and Expressions

Example: assigned values

enum stack operation_result

{
FULL = -2,
BAD_STACK = -1,
OKAY =0,
NOT_EMPTY = O,
EMPTY =1
¥

6.2.4 SmpleCongants

Use the const modifier instead of the #define preprocessor to define simple constants.
This is preferable because #define cannot be used to pass the address of a number to a
function and because #define tells the preprocessor to substitute a token string for an
identifier, which can lead to mistakes (as illustrated in the example below).

Example: using #define
#define SIZE 10 + 10 /* 10 + 10 will be substituted for SIZE */

area = SIZE * SIZE; /* this evaluates to 10 + 10 * 10 + 10 */
/* which is 10 + (10 * 10) + 10 = 120 */

Example: using the const modifier
const int SIZE = 10 + 10; /* SIZE evaluates to the number 20 */

é;éa = SIZE * SIZE; /* this evaluates to 20 * 20 = 400 */
6.3 Variable Definitionsand Declar ations

6.3.1 Numbers

Floating point numbers should have at least one number on each side of the decimal
point:

0.55.0 1.0e+33
Start hexadecimal numbers with 0x (zero, lower-case x) and upper case A-F:

0x123 OxFFF

SEL-94-003 39

Data Types, Operators, and Expressions

End long constants in upper-case L.:

123L

6.3.2 Qualifiers
Always associate qualifiers (e.g., short, long, unsigned) with their basic data types:

short int x;
long int y;
unsigned int z;

6.3.3 Structures

The use of structures is one of the most important features of C. Structures enhance
the logical organization of your code, offer consistent addressing, and will generally
significantly increase the efficiency and performance of your programs.

Using common structures to define common elements allows the program to evolve
(by adding another element to the structure, for example), and lets you modify storage
allocation. For example, if your program processes symbols where each symbol has a
name, type, flags, and an associated value, you do not need to define separate vectors.

Example: structures

typedef struct symbol
{

char *name;
int type;
int flags;
int value;
} symbol_type;
symbol_type symbol_table[NSYMB];

6.3.4 Automatic Variables

An automatic variable can be initialized either where it is declared or just before it is
used. If the variable is going to be used close to where it is declared (i.e., less than one
page later), then initialize it where it is declared. However, if the variable will be used
several pages from where it is declared, then it is better practice to initialize it just
before it is used.

40 SEL-94-003

Data Types, Operators, and Expressions

Example: variable initialized where declared

int max = 0;
/* use of max is within a page of where it is declared */
for (i=0; i<n; i++)
it (vec[i] > max)
max = vec[i];
Example: variable initialized where used
Use an assignment statement just before the for loop:

int max;
/* several pages between declaration and use */
max = 0;
for (i=0 ; i<n ; i++)

if (vecl[i] > max)

max = vec[i];
Or use the comma operator within the for loop:

int max;
/* several pages between declaration and use */
for (max = 0, 1=0; i<n; i++)

it (vecl[i] > max)
max = vec[i];

6.4 TypeConversonsand Casts

Type conversions occur by default when different types are mixed in an arithmetic
expression or across an assignment operator. Use the cast operator to make type
conversions explicit rather than implicit.

Example: explicit type conversion (recommended)

float T;
int i;

f = (int) i:

SEL-94-003 41

Data Types, Operators, and Expressions

Example: implicit type conversion

6.5

float T;
int i;

f=1;

Pointer Types

Explicitly declare pointer entities (variables, function return values, and constants)
with pointer type. Put the pointer qualifier (*) with the variable name rather than
with the type.

Example: pointer declaration

6.6

char *s, *t, *u;

Pointer Conversions

Programs should not contain pointer conversions, except for the following:

NULL (i.e., integer 0) may be assigned to any pointer.

Allocation functions (e.g., malloc) will guarantee safe alignment, so the
(properly cast) returned value may be assigned to any pointer. Always use
sizeof to specify the amount of storage to be allocated.

Size. Pointers to an object of given size may be converted to a pointer to an
object of smaller size and back again without change. For example, a pointer-
to-long may be assigned to a pointer-to-char variable which is later assigned
back to a pointer-to-long. Any use of the intermediate pointer, other than
assigning it back to the original type, creates machine-dependent code. Use it
with caution.

6.7 Operator Formatting
* Do not put space around the primary operators: ->,.,and[]:
p->m s.m a[i]
» Do not put a space before parentheses following function names. Within
parentheses, do not put spaces between the expression and the parentheses:
exp(2, x)
42 SEL-94-003

Data Types, Operators, and Expressions

* Do not put spaces between unary operators and their operands:
Ip ~b ++i -n *p &x
» Casts are the only exception. do put a space between a cast and its operand:
(long) m
» Always put a space around assignment operators:
cl = c2
» Always put a space around conditional operators:
z=(C(a>b) ?a: b;
» Commas should have one space (or newline) after them:
strncat(t, s, n)
» Semicolons should have one space (or newline) after them:
for (i = 0; 1 < n; ++i)
» For other operators, generally put one space on either side of the operator:
X +y a<b&&b<c

» Occasionally, these operators may appear with no space around them, but the
operators with no space around them must bind their operands tighter than
the adjacent operators:

printf(fmt, a+l)

» Use side-effects within expressions sparingly. No more than one operator
with a side-effect (=, op=, ++, --) should appear within an expression. Itis
easy to misunderstand the rules for C compilation and get side-effects
compiled in the wrong order. The following example illustrates this point:

if ((a < b) & (c==d)) ...

If a is not < b, the compiler knows the entire expression is false so (¢ ==d) is
never evaluated. In this case, (c == d) is just a test/relational expression, so
there is no problem. However, if the code is:

ifT ((a < b) && (c==d++))

d will only be incremented when (a < b) because of the same compiler
efficiency demonstrated in the first example.

SEL-94-003 43

Data Types, Operators, and Expressions

CAUTION: Avoid using side-effect operators within relational expressions.
Even if the operators do what the author intended, subsequent reusers may
question what the desired side-effect was.

» Use comma operators exceedingly sparingly. One of the few appropriate
places is in a for statement. For example:

for (i =0, J =1; 1 <5; i++, jJ++);
» Use parentheses liberally to indicate the precedence of operators. This is
especially true when mask operators (&, |, and *) are combined with shifts.

» Split a string of conditional operators that will not fit on one line onto separate
lines, breaking after the logical operators:

ifT (p->next == NULL &&
(total_count < needed) &&
(needed <= MAX_ALLOT) &&
(server_active(current_input)))

{
statement_1;
statement_2;
statement_n;
3

6.8 Assgnment Operatorsand Expressons

C is an expression language. In C, an assignment statement such as “a = b” itself has a
value that can be embedded in a larger context. We recommend that you use this
feature very sparingly. The following example shows a standard C idiom with which
most C programmers are familiar.

Example: embedded assignments

while ((c = getchar()) = EOF)

{
statement_1;
statement_2;
statement_n;
3

However, do not overdo embedding of multiple assignments (or other side-effects) in
a statement. Consider the tradeoff between increased speed and decreased
maintainability that results when embedded statements are used in artificial places.

44 SEL-94-003

Data Types, Operators, and Expressions

Example: nonembedded statements
total = get_total ();
if (total == 10)
printf(“goal achieved\n”);
Example: embedded statements (not recommended)
if ((total = get_total() == 10)
printf(“goal achieved\n™)

6.9 Conditional Expressons

In C, conditional expressions allow you to evaluate expressions and assign results in a
shorthand way. For example, the following if then else statement

if (a > b)
Z = a;
else
Z = b;

could be expressed using a conditional expression as follows:
z=(@>b) ?a:b; /*z=nmax(a, b) */

While some conditional expressions seem very natural, others do not, and we
generally recommend against using them. The following expression, for example, is
not as readable as the one above and would not be as easy to maintain:

c=(==b) ?2d+ f@) : f(b) - d;

Do not use conditional expressions if you can easily express the algorithm in a more
clear, understandable manner. If you do use conditional expressions, use comments to
aid the reader’s understanding.

6.10 Precedenceand Order of Evaluation

There are 21 precedence rules. Rather than trying to memorize the rules or look them
up every time you need them, remember these simple guidelines from Steve Oualline’s
C Elements of Style:

e * 06 / comebefore + and -
» Put () around everything else

SEL-94-003 45

STATEMENTS
AND CONTROL FLOW

This section describes how to organize statements into logical
thoughts and how to format various kinds of statements. The
general principles for writing clear statements are as follows:

» Use blank lines to organize statements into paragraphs and
to separate logically related statements.

» Limit the complexity of statements, breaking a complex
statement into several simple statements if it makes the
code clearer to read.

* Indent to show the logical structure of your code.

7.1 Sequence Statements

This section describes the rules for formatting statements in blocks.

7.1.1 Statement Placement
Put only one statement per line (except in for loop statements):

switch (axescolor)
{
case "B":
color
break;
case "Y":
color
break;
case "R":
color
break;
default:
color
break;

BLACK;

YELLOW;

RED;

GREEN;

SEL-94-003 a7

Statements and Control Flow

Avoid statements that rely on side-effect order. Instead, put the variables with
operators ++ and -- on lines by themselves:

*destination = *source;
destination++;
source++;

afi]l = b[i++];

It is recommended that you use explicit comparison even if the comparison value
will never change. For example, this statement:

it (Y(bufsize % sizeof(int)))
should be written instead as
if ((bufsize % sizeof(int)) == 0)

to reflect the numeric (not boolean) nature of the test.

7.1.2 Braces

Compound statements, also known as blocks, are lists of statements enclosed in
braces. The brace style we recommend is the Braces-Stand-Alone method. Place
braces on separate lines and align them. This style, which is used throughout this
document, allows for easier pairing of the braces and costs only one vertical space.

Example: Braces-Stand-Alone method

for (i =0, j = Strlen(s)-l; 1 < IR i++, J__)

{
c = s[i];
sLi] = s[il;
sl = c;

}

Although C does not require braces around single statements, there are times when
braces help improve the readability of the code. Nested conditionals and loops can
often benefit from the addition of braces, especially when a conditional expression is
long and complex.

The following examples show the same code with and without braces. We encourage
the use of braces to improve readability. Use your own judgment when deciding
whether or not to use braces, remembering that what is clear to you may not be
obvious to others who read your code.

48 SEL-94-003

Statements and Control Flow

Example: braces improve readability
for (dp = &values[0]; dp < top_value; dp++)

it (dp->d_value == arg_value
&& (dp->d_flag & arg_flag) != 0)

{

}
}
return (NULL);

return (dp);

Example: no braces

for (dp = &values[0]; dp < top_value; dp++)
if (dp->d_value == arg_value &&
(dp->d_flag & arg_flag) != 0)
return (dp);
return (NULL);

» If the span of a block is large (more than about 40 lines) or there are several
nested blocks, comment closing braces to indicate what part of the process

they delimit:
for (sy = sytable; sy != NULL; sy = sy->sy link)
{
it (sy->sy flag == DEFINED)
{
} /* if defined */
else
{
} /* if undefined */
3} /* for all symbols */

e If afor or while statement has a dummy body, the semicolon should go on the
next line. It is good practice to add a comment stating that the dummy body is

deliberate.
/* Locate end of string */

for (char_p = string; *char_p '= EOS; char_p++)
; /* do nothing */

» Always put a space between reserved words and their opening parentheses.
» Always put parentheses around the objects of sizeof and return.

SEL-94-003 49

Statements and Control Flow

7.2 Sdection Control Statements

This section discusses the recommended formatting for selection control statements.
Examples are given to show how to format single statements as well as blocks of
statements.

7.21 If
* Indent single statements one level:

it (expression)
one_statement;

* Indent a block of statements one level using braces:

it (expression)

{
statement_1;
statement_n;
}
7.2.2 IfElse

» If else statements that have only simple statements in both the if and else
sections do not require braces but should be indented one level:

it (expression)
statement
else
statement

» If else statements that have a compound statement in either the if or else
section require braces and should be indented one level using braces:

iT (expression)
one_statement;
else

{

statement_1;

statement_n;

}

50 SEL-94-003

Statements and Control Flow

7.2.3 Elself
For readability, use the following format for else if statements:

it (expression)
statement[s]

else if (expression)
statement[s]

else
statement[s]

7.2.4 Neged If Statements

7241 IfIfIf

Use nested if statements if there are alternative actions (i.e., there is an action in the
else clause), or if an action completed by a successful evaluation of the condition has
to be undone. Do not use nested if statements when only the if clause contains

actions.
Example: good nesting

status = delta_create((Callback)NULL, &delta);
if (status == NDB_OK)

{
if ((status = delta_record_condition(...)) == NDB OK &&
(status = delta field condition(...)) == NDB _OK &&
(status=delta_field_condition(...)) == NDB OK)
status = delta_commit(delta, ...);
(void)ndb_destroy delta(delta);
}

Example: inappropriate nesting

status = delta _create((Callback)NULL, &delta);
if (status == NDB_O0K)

{
status = delta_record _condition(delta, ...);
if (status == NDB OK)
{
status = delta_field condition(delta, ...);

if (status == NDB _OK)

(cont’d next page)

SEL-94-003 51

Statements and Control Flow

Example: inappropriate nesting (cont’d)

{
status = delta_field_condition(...);
if (status == NDB_OK)
status = delta_commit(delta, ...);
}

by
(VOID)ndb_destroy_delta(delta);

}

return(status);

7.2.4.2 IfIf Else

Because the else part of an if else statement is optional, omitting the “else” from a
nested if sequence can result in ambiguity. Therefore, always use braces to avoid
confusion and to make certain that the code compiles the way you intended. In the
following example, the same code is shown both with and without braces. The first
example will produce the results desired. The second example will not produce the
results desired because the “else” will be paired with the second “if” instead of the
first.

Example: braces produce desired result
if (n > 0)
{

for (i = 0; i < n; i++)

if (s[i] > 0)

{
printf("...");
return(i);
}
}
}
else /* CORRECT -- braces force proper association */

printf("error - n is zero\n");

52 SEL-94-003

Statements and Control Flow

Example: absence of braces produces undesired result

if (n >0)
for (i = 0; 1 < n; i++)

it (s[i] > 0)

{
printf(...");
return(i);
by
else /* WRONG -- the compiler will match to closest */

/* else-less if */
printf("'error - n is zero\n");

7.2.5 Switch
For readability, use the following format for switch statements:

switch (expression)

{

case aaa:
statement[s]
break;
case bbb: /* fall through */
case ccc:
statement[s]
break;
default:
statement[s]
break;

}

Note that the fall-through feature of the C switch statement should be commented for
future maintenance.

All switch statements should have a default case, which may be merely a “fatal error”
exit. The default case should be last and does not require a break, but it is a good idea
to put one there anyway for consistency.

7.3 lteration Control Statements

This section discusses the recommended formatting for iteration control statements.
Examples are given to show how to format single statements as well as blocks of
statements.

SEL-94-003 53

Statements and Control Flow

7.3.1 While
For one statement, use the following format:

while (expression)
one_statement;

For a block of statements, use:

while (expression)

{

statement_1;

statement_n;

}

7.3.2 For
Use the following formats:

for (expression)
one_statement;
for (expression)

{

statement_1;

statement_n;

}

If a for loop will not fit on one line, split it among three lines rather than two:

for (curr = *listp, trail = listp;
curr != NULL;
trail = &(curr->next), curr = curr->next)

statement_1;

statement_n;

54 SEL-94-003

Statements and Control Flow

7.3.3 DoWhile
For readability, use the following format:

do
{

statement_1;
statement_2;
statement_3;

}

while (expression)

7.4 SevereError and Exception Handling

This section discusses the recommended formatting for goto statements and labels.
We also discuss the use of the break statement. Recommendations in this section
correspond to the severe error and exception handling guidelines given in Section 4.2.4.
Note that although gotos and labels are legal constructs of the C language, we do not
recommend using them if you can write clear structured code without them.

7.4.1 Gotosand Labds

Goto statements should be used very sparingly, as in any well-structured code. They
are useful primarily for breaking out of several levels of switch, for, and while nesting,
as shown in the following example:

for (...)
{
for (...)
{
i%-(disaster)
{
goto error;
}
}
}
erro}z-

error processing

7.4.2 Bresk

A break statement can be used to exit an inner loop of a for, while, do, or switch
statement at a logical breaking point rather than at the loop test. The following

SEL-94-003 55

Statements and Control Flow

examples, which remove trailing blanks and tabs from the end of each input line
illustrate the difference.

Example: logical break

while ((n = getline(line, MAXLINE)) > 0)

{
while (--n >= 0)
if (line[n] = " " && line[n] = "\t" &&
line[n] '= "\n")
break;
}
}

Example: loop test

while ((n = getline(line, MAXLINE)) > 0)

{
while (--n >= 0 &&
(Line[n]==" " || line[n]=="\t" || line[n]=="\n"))
/* VOID */
}

56 SEL-94-003

8.1

PORTABILITY AND
PERFORMANCE

Code is often developed on one type of computer and then
ported to and executed on another. Therefore, it is judicious to
make the code as portable as possible, requiring no changes or
minimal ones—such as changes to system-specific header files.
When writing software, consider the following guidelines that
will enhance portability and performance.

Guiddinesfor Portability

Use ANSI C whenever it is available.

Write portable code first. Consider detailed optimizations only on computers
where they prove necessary. Optimized code is often obscure.
Optimizations for one computer may produce worse code on another.
Document code that is obscure due to performance optimizations and isolate
the optimizations as much as possible.

Some code/functions are inherently nonportable. For example, a hardware
device handler, in general, can not be transported between operating systems.

If possible, organize source files so that the computer-independent code and
the computer-dependent code are in separate files. That way, if the program
is moved to a new computer, it will be clear which files need to be changed for
the new platform.

Different computers have different word sizes. If you are relying on a
(predefined) type being a certain size (e.g., int being exactly 32 bits), then
create a new type (e.g., typedef long int32) and use it (int32) throughout the
program; further changes will require only changing the new type definition.

Note that pointers and integers are not necessarily the same size; nor are all
pointers the same size. Use the system function sizeof{(...) to get the size of a
variable type instead of hard-coding it.

Beware of code that takes advantage of two’s complement arithmetic. In
particular, avoid optimizations that replace division or multiplication with
shifts.

Become familiar with the standard library and use it for string and character
manipulation. Do not reimplement standard routines. Another person reading

SEL-94-003 57

Portability and Performance

your code might see the reimplementation of a standard function and would
need to establish if your version does something special.

» Use #ifdefs to conceal nonportable quirks by means of centrally placed
definitions.

Example: centrally placed definitions

#ifdef decus

#define UNSIGNED_LONG long

#else

#define UNSIGNED_LONG unsigned long
#endif

8.2 Guiddinesfor Performance

* Remember that code must be maintained.

» If performance is not an issue, then write code that is easy to understand
instead of code that is faster. For example,

replace: d=(a=b+c)+r; with: a=b+c;
d=a+r;

* When performance is important, as in real-time systems, use techniques to
enhance performance. If the code becomes “tricky” (i.e., possibly unclear),
add comments to aid the reader.

* Minimize the number of opens and closes and 1/0O operations if possible.
* Free allocated memory as soon as possible.

» To improve efficiency, use the automatic increment ++ and decrement
operators -- and the special operations += and *= (when side-effect is not an
issue).

* ANSI C allows the assignment of structures. Use this feature instead of
copying each field separately.

* When passing a structure to a function, use a pointer. Using pointers to
structures in function calls not only saves memory by using less stack space,
but it can also boost performance slightly. The compiler doesn’t have to
generate as much code for manipulating data on the stack and it executes faster.

58 SEL-94-003

C CODE
EXAMPLES

The following examples illustrate many of the principles of
good style discussed in this document. They include:

» A Makefile, which provides an efficient mechanism for
building several executables.

» A .cfile, which illustrates program file organization and
principles of readability.

e Aninclude file, which illustrates clear and maintainable
definition and organization of constants and external
variables.

SEL-94-003

59

C Code Examples

9.1 Makefile

Makefile for U X Testing .

#

#

#

J. Progranmmer

#

This nmakefile can build 8 different executabl es.
share sonme of the sane code and share |ibraries.
#

(Cbj ect code for the executabl es

#

INIT_OBJS = 0i _seq_init.o oi_seq_drv_1.0

GEN_SCREEN OBJS = oi _seq_gen_screen_PRI VATE. o\
oi _seq drv_1.0\
oi _seq_resi ze_pane. o\
oi _seq_get pane_si zes_PRI VATE. o\
oi _seqg_init.o

FATAL _OBJS = oi _seq _drv_2. o\
oi _seq_fatal PRI VATE. o

PROC _FOCUS_EVENTS OBJS = oi _seq_drv_3. o\
oi _seq_proc_focus_events.o

LOAD OBJS = oi _seq_|l oad_drv. o\
oi _seq_|I oad. o\
print_seq.o

SUB BUILD 1 =\
oi _seq_init.o\
oi _seqg_gen_screen_PRI VATE. o\
oi _seq_resi ze_pane. o\
oi _seq_get pane_si zes_ PRI VATE. o\
oi _seqg_proc_focus_events. o\
oi _seq_lI oad. o\
oi _seqg_change_exec_type. o\
oi _seq file_error_PRIVATE. o\
oi _seqg_enabl e_sequence_PRI VATE. o\
oi _seq_new _app_PRI VATE. o\
oi _seq_prep_I| oad. o\
oi _seqg_change_current PRI VATE. o\
oi _seq_set _detail _pane_PRI VATE. o\
oi _seq_retrieve_detail pane PRI VATE. o\
oi _seq_subbld 1.0

SUB BUI LD 2 =\

The execut abl es

60

SEL-94-003

C Code Examples

BUI LD 2

oi _seqg_init.o\

oi _seqg_gen_screen_PRI VATE. o\

oi _seqg_proc_focus_events. o\

oi _seqg_quit. o\

oi _seq_seqcr_spawn_PRI VATE. o\

oi _seq_seqcr_conti nue. o\

oi _seqg_seqcr_handl e_si gchl d. o\

oi _seq_seqcr_start. o\

oi _seqg_seqcr_term o\

oi _seq_lI oad. o\

oi _seqg_change_exec_type. o\

oi _seq file_error_PRIVATE. o\

oi _seqg_enabl e_sequence_PRI VATE. o\
oi _seq_new _app_PRI VATE. o\

oi _seq_prep_I| oad. o\

oi _seqg_change_current PRI VATE. o\
oi _seq_set _detail _pane_PRI VATE. o\
oi _seq_retrieve_detail pane PRI VATE. o\
oi _seq_new. o\

oi _seq_renove_app. o\

oi _seq_check_seq_ui . o\

oi _seq_seqcr_check_seq_PRI VATE. o\
oi _seq_i nsert_app. o\

oi _seq_reconfigure_pane_PRI VATE. o\
oi _seq_subbld 2.0

=\

oi _seqg_change_current PRI VATE. o\
oi _seqg_change_exec_type. o\

oi _seqg_enabl e_sequence_PRI VATE. o\
oi _seq_fatal PRI VATE. o\

oi _seqg_gen_screen_PRI VATE. o\

oi _seqg_init.o\

oi _seq_lI oad. o\

oi _seq_new_app_PRI VATE. o\

oi _seq_proc_focus_events. o\

oi _seqg_quit.o\

oi _seq_retrieve_detail pane_ PRI VATE. o\
oi _seq_save. o\

oi _seq_set _detail _pane_PRI VATE. o\
oi _seqg_seqcr_check_seq_PRI VATE. o\
oi _seq_seqcr_conti nue. o\

oi _seqg_seqcr_handl e_si gchl d. o\

oi _seq_seqcr_spawn_PRI VATE. o\

oi _seqg_seqcr_start. o\

oi _seq_seqcr_term o\

oi _seq_dat a. o\

oi _seq_reconfigure_pane_PRI VATE. o\

oi _seq_b2 stubs. o\
oi _session_ngr_nain.o

SEL-94-003

61

C Code Examples

These are included in all executables
OBJS = test_nain.o oi_seq_data.o stubs.o

| NTERNAL_DEFI NES = - DTEST_NO NCSS

DEFI NES =

DEBUG = - g

CUSTOM FLAGS = - posi x - W8 - DXTFUNCPROTO - DFUNCPROTO

CFLAGS = $(DEBUG) $(CUSTOM FLAGS) $(1NCDIR) $(DEFI NES)\
$(| NTERNAL_DEFI NES)

| NCLUDE PATHS
INCDIR = -1/u/cnps3/ U X/ dev/include \
-1/ u/ cnmps3/ Ul X/ codebaseb/ sco/ source

LI BRARI ES

NCSS LIBS = #-lIncss_c -lrpcsve -1rpc -1 socket

XLIBS = -I XtXms -| Xnu -1X11_s -1 PW

U XLIBDIR = -L/u/cnps3/U X/ R1/1ib/sco -L/u/cnps3/ U X/ dev/libl/sco
U X_LIBS = -luixdiag -Iuixutil

U X LIBS2 = -1 msgr

Conpilation for the executables ...

test_init: $(INT_OBIS) $(0OBIS)
$(CC) -o test_init $(INIT_OBIS) $(OBIS) $(U XLIBDIR)
$(NCSS_LI BS) \
$(U X_LIBS) $(XLIBS)

t est _gen_screen: $(GEN_SCREEN OBJS) $(0BJS)
$(CC) -0 test_gen_screen $(GEN _SCREEN OBJS) $(0BJS) $(U XLI BDI R)\
$(NCSS_LIBS) $(U X _LIBS) $(XLIBS)

test_fatal: $(FATAL_OBJS) $(OBJIS)
$(CC) -0 test_fatal $(FATAL_OBIS) $(OBJS) $(NCSS_LIBS) $(Ul XLI BDI R)\
$(U X_LIBS) $(XLIBS)

test _proc_focus_events: $(PROC_FOCUS_EVENTS_OBJS) $(0OBJS)
$(CC) -0 test_proc_focus_events $(PROC_FOCUS_EVENTS _OBJS) $(0OBIS)\
$(U XLIBDIR) $(Ul X_LIBS)

test_load: $(LOAD OBJS) $(OBJIS)
$(CC) -0 test_|load $(LOAD CBIS) $(OBIS)\
$(U XLIBDIR) $(U X _LIBS) $(XLIBS)

sub_build_1: $(SUB_BU LD 1) $(0BJIS)
$(CC) -0 $@ $(SUB BU LD 1) $(OBJS) $(U XLIBDIR) $(NCSS_LI BS)\
$(U X_LIBS) $(XLIBS)

sub_build_2: $(SUB_ BUI LD 2) $(0BJIS)
echo $(SUB_BUI LD 2)
$(CO) -0 $@ $(SUB_BUILD 2) $(OBIS) $(U XLIBDIR) $(NCSS_LIBS)\
$(U X_LIBS) $(XLIBS)

build_2: $(BUI LD _2)

62 SEL-94-003

C Code Examples

$(C0) -0 $@ $(BUILD 2) $(U XLIBDIR) $(NCSS_LIBS)\
$(U X_LIBS) $(XLIBS)

cl ean:
/binfrm $(INIT_OBIS) $(0OBIS) $(CGEN_SCREEN OBJS) $(FATAL_OBJIS)\
$(LOAD OBJS) $(SUB BU LD 1)
depend:
nmakedepend -- $(CFLAGS) -- “/bin/ls *.c’

DO NOT DELETE THI' S LINE -- nake depends on it.

[ajillion lines that are dependenci es generated by makedepend go here]

SEL-94-003 63

C Code Examples

9.2 CProgram File: RF_GetReference.c

/***

*

E o I R T B B I R SR T T R T R B N R R R S T R S R B N N N N

FI LE NAME: RF_Cet Reference.c

PURPOSE: This function determnes if a requested reference
vector is in need of update. It uses analytic routines
to update vectors and these updates are reflected in the

reference. h include file.

FI LE REFERENCES:

EXTERNAL VARI ABLES:
Source : debug. h
debug file_handl e
debug | evel

Source : HD_reference.
ephemfile lu

ephem et hod

kepl eri an

IO

doubl e[6]

Descri ption

Descri ption

File handl e for debug file
name

Debug | evel array

Descri ption
FORTRAN | ogi cal unit nunber
for the epheneris file
Met hod for computing
epheneris information:
F Use epheneris file
A = Conpute analytically
usi ng Kepl erian
el enent s
Keplerian orbital elenments at
t he epoch tine
(orbital _t_epoch):
[1] Semi major axis [kni
[2] Eccentricity
[3] Inclination [rad]
[4] Right ascension of
t he ascendi ng node
[rad]

64

SEL-94-003

L B S T TR I B R S B SR R TR B I B R I R A R S R I R N N I R

C Code Examples

nLorder
mexi t
MJ_E
NUMPTS
orbital t_epoch
THREEB
ttol

t b ref
t e ref
t mref
t o ref

t_rv_ref

t s ref

e_pos

m_pos
mag_field
mag_field_ unit
orbit_nornal
S_C_pos

s_c_vel
S_pos

EXTERNAL REFERENCES:
c_ephenrd

c_cal pvs

c_sunl unp

c_emagfld
c_nmist

CGener at es

CGener at es
Opens the

| ong

| ong
doubl e
i nt
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

doubl e

doubl e

doubl e[3]
doubl e[3]
doubl e[3]

doubl e[3]

doubl e[3]
doubl e[3]
doubl e[3]
doubl e[3]

Descri ption

Retrieves vectors froman epheneris file and

IO

IO

IO

IO

0000 O 00O O

[5] Argunment of perigee
[rad]
[6] Mean anonmly [rad]
Order of magnetic field
Maxi mum nunber of iterations
to converge the true
anomal y

Earth gravitational
[kn3/ sec”?2]

Nunber of points used by the
EPHEMRD i nt er pol at or

Base epoch tine of the
orbital elenments [sec]

Gravitational constant of
perturbations [Knt2]

Tol erance in the cal cul ations
of the true anomaly [rad]
Tinme of last calculated Earth
magnetic field vector [sec]

const ant

Tinme of last calculated s/c
to Earth unit vector [sec]
Time of last calculated s/c
to Mbon unit vector [sec]
Tinme of |ast cal cul ated orbit
normal unit vector [sec]
Tinme of last calculated s/c

position and velocity
vect or s[sec]
Time of last calculated s/c
to Sun unit vector [sec]
S/ICto Earth unit vector
S/C to Moon unit vector
Earth magnetic field vector
[
Earth magnetic field unit
vect or
O bit normal
S/ C position vector [kn
S/ C velocity vector [knisec]
S/Cto Sun unit vector

unit vector

interpolates themfor a requested tine

Generates s/c position and velocity vectors

using J2 effects

vectors

Earth to Sun or

Earth to Moon

Earth nmagnetic field vectors
magnetic field file for

readi ng

SEL-94-003

65

PR I R A R T I N T R S B R A N R B N N N N N . N N I R R T R R R N B N T R S R R

C Code Examples

Get Sun Conpute s/c to Sun unit vector

Get Or bi t Nor mal Conpute orbit normal vector

Cet Earth Conpute s/c to Earth vector

CGet Moon Conpute s/c to Moon unit vector

SecsToCal endar Converts time from secornds to standard
cal endar for mat

c_packst Converts time fromstandard cal endar format to
an unpacked array format

c_calnd Conputes the nodified Julian date of an
unpacked array format tinme

c_jgrenha Conmput es the Greenwi ch Hour Angle using
anal ytical data

c_unvec3 Unitizes a vector and conputes its nagnitude

ABNORMAL TERM NATI ON CONDI TI ONS, ERROR AND WARNI NG MESSAGES
none

ASSUMPTI ONS, CONSTRAI NTS, RESTRI CTI ONS: none

NOTES:
CALLED BY: InitReference, CalcNadirAngle, ConvertAttitude,
Conput eAtti tude, ConmpSunNad, Cal cLanbdaPhi

REQUI REMENTS/ FUNCTI ONAL SPECI FI CATI ONS REFERENCES
FASTRAD Functional Specifications, Sections 4.3.1 - 4.3.6

DEVELOPMENT HI STORY

Dat e Nane Change Rel ease Description
I D

09-16-93 J. Programer 1 Prol og and PDL

10-25-93 J. Progranmer 1 Coded

11-16-93 J. Programmer 1 Control | ed

12-02-93 J. Progranmmer 1 I nt egrated new RSL
routines

12-20-93 J. Programer 12 1 Created internedi ate
variabl es for #define
argunents of cal pvs
in order to pass
by address

02-15-94 J. Programmer 15 2 Corrected tine errors
using RSL routines

05-03-94 J. Programmer 3 Enhancenents to RSL
pr ot ot ypes

05-10-94 J. Progranmer 3 Added Earth magnetic
field read capability

05-10-94 J. Programmer 3 Added epheneris read
capability

66 SEL-94-003

C Code Examples

ALGORI THM

*

*

* DO CASE of reference type

*

* CASE 1 or 2, request is for s/c position or velocity vectors

*

* | F offset between request tinme and tine of last calculated s/c

* position and velocity vectors exceeds wait tinme THEN

*

* COWPUTE el apsed seconds between epoch time and request tine

*

* | F epheneris nethod is for reading file THEN

* CALL c_ephemrd to read epheneris file getting s/c position and

* vel ocity vectors

* ELSE (anal ytic computati on)

* CALL c_cal pvs to generate new s/c position and velocity

vectors

* ENDI F

*

* SET new tinme of last calculated s/c position and velocity

* vectors to request tine

*

* ENDI F

*

* I F reference type is for s/c position vector THEN

* SET return vector to s/c position vector

* ELSE

* SET return vector to s/c velocity vector

* ENDI F

*

* CASE 3, request is for s/c to Sun unit vector

*

* | F offset between request tinme and tine of |last calculated s/c to

* Sun unit vector exceeds wait time THEN

*

* CALL SecsToCal endar c_packst and c_calnjd to get nodified
Julian date

* CALL c_sunlunp to generate new Earth to Sun vector

* CALL GetSun to conpute new s/c to Sun unit vector

*

* SET new tine of last calculated s/c to Sun unit vector to
request tine

*

*

ENDI F

SEL-94-003 67

* %k X ok kX X F *

EE T B N SR T R R I N T T R R T N R N N R N N N

* F X F

* % X

C

Code Examples

SET return vector to s/c to Sun unit vector

CASE 4 or 5, request is for Earth magnetic field vector or Earth

magnetic field unit vector

| F offset between request tinme and tinme of last calculated Earth
magnetic field vector exceeds wait tinme THEN

CALL SecsToCal endar c_packst and c_calnjd to get nodified
Julian date

CALL c_jgrenha to get the G eenwich Hour Angle

CALL c_emagfld to generate new Earth magnetic field vector
CALL c_unvec3 to SET Earth magnetic field unit vector

SET new time of last calculated Earth nagnetic field vector to
request tine

ENDI F

IF reference type is for Earth magnetic field vector THEN
SET return vector to Earth magnetic field vector
ELSE
SET return vector to Earth magnetic field unit vector
ENDI F

CASE 6, request is for orbit normal unit vector

| F of fset between request time and tine of |ast calculated orbit
normal unit vector exceeds wait time THEN

CALL GetOrbitNormal to generate new orbit normal unit vector

SET new tine of last calculated orbit normal unit vector to
request tine

ENDI F

SET return vector to orbit normal unit vector

CASE 7, request is for s/c to Mbon unit vector

| F offset between request tinme and tine of last calculated s/c to
Moon unit vector exceeds wait time THEN

CALL SecsToCal endar c_packst and c_calnjd to get nodified Julian
dat e

CALL c_sunlunp to generate new Earth to Mbon vector

CALL Get Moon to conpute new s/c to Moon unit vector

SET new tine of last calculated s/c to Moon unit vector to
request tine

ENDI F

SET return vector to s/c to Mon unit vector

68

SEL-94-003

C Code Examples

L R S R R I B R R B R

[* 1

#i nc
#i nc

CASE 8, request is fo

| F of fset between request tinme and tine of

Earth unit vector

r s/lc to Earth unit vector

exceeds wait tine THEN

CALL GetEarth to conmpute new s/c to Earth unit vector

SET new tine of last calculated s/c to Earth unit vector

request tine

ENDI F

SET return vector to s/c to Earth unit vector

END CASE

RETURN

ncl ude gl obal paranet

| ude "HD debug. h"
| ude "HD reference. h"

/* Declare Prototypes */

voi d
voi d

voi d
voi d

voi d
voi d
voi d
voi d

voi d

voi d
voi d
voi d
voi d

c_ephenrd (Il ong
doubl e *
c_cal pvs (double
| ong

c_sunlunp (double ,
c_emagfl 2 (long ,
| ong ,
c_ nmist (long ,
c_packst (double ,
c_calnjd (double *,
c_jgrenha (double ,
long *);
c_unvec3 (double *,

Get Sun (dou

ers */

| ong

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
long *
doubl e
doubl e
doubl e

doubl e

bl e[3],

Get Or bi t Nor mal (doubl e[3]);

GetEarth
CGet Moon (dou

bl e[3],

doubl e SecsToCal endar (doubl e);

/***

*

*
*
*
*
*

FUNCTI ON NAME

ARGUMENT LI ST:

Ar gunment Type

(doubl e[3]);

doubl e *,

double ,

doubl e *,

doubl e *,

, long , doubl e
* double *, long *);
, double *, double
*, double *, long *);
, double *, double *);

, double , double
*, long *);

, char * |, long *);
*)'
*),

, long , long
*, double *);
doubl e[3]);
doubl e[3]);

Cet Ref er ence

IO

Descri ption

to

| ast calculated s/c to

EE R I I R I R I I S R I R I I R I I R S I R I I I R I I R I I O R */

SEL-94-003

69

C Code Examples

ref _type i nt I Type of reference data requested
= 1, S/C position vector

, S/IC velocity vector

, SSICto Sun unit vector

, Earth nagnetic field

vect or

Earth magnetic field unit

vect or

6, Orbit normal unit vector

[I |
A WN P

I
o

=7, SICto Mon unit vector
=8, S/ICto Earth unit vector

t _request doubl e I Time of requested reference
vect or

t_wait doubl e I Wait time between reference
vector cal cul ati ons

ref _vector doubl e[3] 0] Request ed reference vector

RETURN VALUE: void

* %k X ok kX 3k kX 3k kX 3k X Xk X X X F

**/

voi d CGetReference(int ref_type, double t_request, double t_wait,
doubl e ref _vector[3])

{
/ LOCAL VARI ABLES:

Vari abl e Type Descri ption

sun doubl e[3] Earth to Sun vector [km] (from
c_sunl unp)

noon doubl e[3] Earth to Moon vector [km (from
c_sunl unp)

cal date doubl e Epoch tinme in cal endar fornat

starray doubl e[6] Epoch time in unpacked array format

njd doubl e Modi fied Julian Date [days]

gha doubl e Greenwi ch Hour Angle [rad]

aldi ff doubl e Al - UTl tinme difference [sec]

nunsel ¢ | ong Nurmber of secular termnms of nutation
to conmpute (1- 39, nominally 1)

nunt erm | ong Nunber of nonsecul ar terns of

nutation to conmpute (1-106,
nom nal |y 50)

L T R R T R T B R R T R B R N N N N N T

f dumm doubl e Unused return value (from c_unvec3)

ierr | ong Return code from RSL routines

m doubl e Vari abl e for #defined MJ E

t doubl e Variabl e for #defi ned THREEB

eptine doubl e El apsed seconds between epoch tine
and requested tinme [sec]

dpos doubl e Array of dunmy position vectors used
by ephenris read routine

dvel doubl e Array of dunmy velocity vectors used
by ephenris read routine

| oop_count er i nt Loop counter

i i nt Loop counter

70 SEL-94-003

C Code Examples

* i i nt

*/

doubl e i nt sun[3], noon[3],
aldiff, fdumm

doubl e i nt m t;

doubl e i nt epti ne;

| ong i nt nunsel ¢, nunterm

l ong int ierr = -100;

| ong i nt two = 2;

| ong int four = 4;

| ong int zero = 0;

int int i,j;

char *mag_path =

static int
static doubl e int

| oop_counter = O;
dpos[3] [100],

/* Initialize | ocal parameters for
aldiff = 0.0;
nunsel ¢ = 1;
nunterm= 50

if (debug | evel [RF] > TRACE)

Loop counter

cal dat e,

RSL routines

starray] 6],

nj d, gha,

“/public/libraries/rsl/hpux/emgl990. dat";

dvel [3][100] ;

*/

fprintf(debug file handl e, "ENTER Get Ref erence\n");

if (debug_l evel [RF] > | NPUT)

fprintf(debug file _handle,"\tINPUT\N");

switch (ref_type)

{
case 1:
fprintf(debug file_handl e,
"\t\treference type (ref_type
br eak;
case 2:
fprintf(debug_file_handle,
"\t\treference type (ref_type
br eak;
case 3:
fprintf(debug file_ handl e,
"\t\treference type (ref_type
br eak;
case 4:
fprintf(debug file_handl e,
"\t\treference type (ref_type
br eak;
case 5:

fprintf(debug_file_handle,
"\t\treference type (ref_type
br eak;

1)

2)

3)

4)

5)

S/ C position vector\n");

S/C velocity vector\n");

S/Cto Sun unit vector\n");

Earth mag field vector\n");

Earth mag field unit vector\n");

SEL-94-003

71

C Code Examples

case 6:
fprintf(debug_file_handle,
"\t\treference type (ref_type
br eak;

case 7:
fprintf(debug file_ handl e,
"\t\treference type (ref_type
br eak;

case 8:
fprintf(debug file_handl e,
"\t\treference type (ref_type

6) Orbit normal unit vector\n");

7) S/ICto Moon unit vector\n");

8) S/ICto Earth unit vector\n");

br eak;
}
fprintf(debug_file_handle,
"\t\trequest tine [sec] (t_request) = %f\n",t_request);
fprintf(debug file_handl e,
"\t\twait tine [sec] (t_wait) = %f\n",t_wait);

}

/* Begin Case of reference type */

switch (ref_type)
{

/* Performcase for either s/c position or velocity vector request
* using the RSL routine c_cal pvs */

case 1:
case 2:

if (debug |evel [RF] > | NPUT)

fprintf(debug_file_handle,

"\t\tlast pos and vel vector time [sec] (t_rv_ref) = %f\n",
t_rv_ref);

fprintf(debug file_ handl e,

"\t\tepheneris read nethod flag (ephem net hod) = %\n",

ephem net hod) ;

}
if ((t_request - t_rv_ref) >t _wait)
eptine =t _request - orbital t_epoch;
i f (debug | evel [RF] > | NTERVMEDI ATE)
fprintf(debug _file_handle, "\t NTERVEDI ATE\ n");
fprintf(debug file_ handl e,
"\t\t Request tine [secs fromreference]
(eptine) = %Bf\n",eptine);
if (ephemnethod == "'F")

if (loop_counter == 0)

72 SEL-94-003

C Code Examples

{ for (i=0; i<100; i++)
for (j=0; j<3; j++)
{ dpos[j][i] = 0.0;
dvel [j][i] = 0.0;
} | oop_count er ++;

c_ephemrd(ephemfile_lu,four, zero, eptine,
dpos, dvel, s c_pos,s_c_vel, & err);

if (ierr)
if (debug_l evel [RF] > TRACE)
fprintf(debug file_handle,
"x***x Error code fromc_ephenrd = %d\n",ierr);

}
el se
{
m = MJ_E;
t = THREEB

c_cal pvs(eptinme, mkeplerian,t,ttol,mxit, s c_pos,s_c_vel,&err);

if (ierr)
if (debug_l| evel [RF] > TRACE)
fprintf(debug file_ handl e,
"***x Frror code fromc_calpvs = %d\n",ierr);

i f (debug | evel [RF] > | NTERVMEDI ATE)

fprintf(debug file_handl e,
"\t\tEarth gravitational constant [knt3/sec”"2]
(MJUE) = %f\n", MLE);
fprintf(debug_file_handle,
"\t\tGav. constant [Kn2]
(THREEB) = % f\n", THREEB)
fprintf(debug file_handl e,
"\t\ttol erance of true anonumly [rad]
(ttol) = %f\n",ttol);
fprintf(debug_file_handle,
"\t\tmax iters of true anomaly (maxit) = %\ n", maxit);
fprintf(debug file_handl e,
"\t\ttime of request [sec from epoch]
(eptine) = %Bf\n",eptine);
fprintf(debug file_ handl e,
"\t\tsenm mgjor axis [knj
(keplerian[1]) = % f\n", keplerian[0]);
fprintf(debug file_handl e,
"\t\teccentricity (keplerian[2]) = % f\n", keplerian[1]);
fprintf(debug file_ handl e,

SEL-94-003 73

C Code Examples

"\t\tinclination [rad] (keplerian[3]) =
%Wf\n", keplerian[2]);
fprintf(debug_file_handle,

"\t\tra of asc node [rad] (keplerian[4])
%f\n", keplerian[3]);
fprintf(debug file_ handl e,

"\t\targ of perigee [rad] (keplerian[5])
%Wf\n", keplerian[4]);
fprintf(debug_file_handle,

"\t\tnmean anomaly [rad] (keplerian[6]) =
%f\n", keplerian[5]);

}
t_rv_ref =t _request;
i f (debug_l evel [RF] > | NTERMEDI ATE)

fprintf(debug file_ handl e,
"\t\ts/c position vector [km{ (s_c _pos) = %f,%uf,%f\n",
s_c_pos[0],s_c_pos[1],s_c_pos[2]);

fprintf(debug file_handl e,

"\t\ts/c velocity vector [knm] (s_c_vel)
s c vel[0],s_c vel[1],s c vel[2]);

Wwf,Nf,nf\n",

}

if (ref_type == 1)
for (i=0; i<3 ; i++)
ref _vector[i] = s_c_pos[i];
el se
for (i=0; i<3 ; i++)
ref _vector[i] = s_c_vel[i];
br eak;

/* Performcase for s/c to Sun unit vector request using the RSL
* routine c_sunlunp */

case 3:
if (debug_l evel [RF] > | NPUT)
fprintf(debug file_ handl e,
"\t\tlast sun vector tinme [sec] (t_s ref) = %Bf\n",t_s ref);
if ((t_request - t_s ref) >t _wait)

cal date = SecsToCal endar (t _request);

c_packst (cal date, starray);
c_calnd (starray, &rjd);

c_sunlunp(njd,t_request, sun, noon);
Get Sun (sun,s_pos);

t s ref =t _request;

74 SEL-94-003

C Code Examples

i f (debug | evel [RF] > | NTERVEDI ATE)

{
fprintf(debug file_handle, "\t NTERVEDI ATE\ n");
fprintf(debug file_handl e,
“\t\tModified Julian Date [days] (njd) = %f\n", njd)
fprintf(debug file_ handl e,
"\t\ttine of request [sec] (use t_request see above) \n");
}
}
for (i=0; i<3 ; i++)
ref vector[i] = s_pos[i];
br eak;

/* Performcase for Earth magnetic field vector or Earth magnetic
* field unit vector using RSL routines c_emagfld and c_unvec3 */

case 4.
case 5:

if (debug_l evel [RF] > | NPUT)

fprintf(debug file_handl e,
"\t\tlast Earth mag field vector tine [sec] (t_b ref) = %f\n",
t b ref);

if ((t_request - t b ref) >t wait)

cal date = SecsToCal endar (t _request);

c_packst (cal date, starray);
c_calnd (starray, &rjd);

c_jgrenha(njd, aldiff, nunsel c, nunt erm &gha, & err);

if (ierr)
if (debug | evel [RF] > TRACE)
fprintf(debug file_ handl e,
"*xx* Error code fromc_jgrenha = %d\n",ierr);

c_nmist(1l, & wo, mag_path, & err);

if (ierr)
if (debug | evel [RF] > TRACE)
fprintf(debug_file_handle,
"*xx* Error code fromc_nmist = %d\n",ierr);

c_emagfl 2(two, njd,t_request,gha,s_c_pos, morder,mag_field, & err);

if (ierr)
if (debug |evel [RF] > TRACE)
fprintf(debug_file_handle,
"***x Frror code fromc_emagfl2 = %d\n",ierr);
c_unvec3 (mag_field, mag _field_ unit, & dumm;

t b ref =t _request;

SEL-94-003

75

C Code Examples

i f (debug | evel [RF] > | NTERVEDI ATE)

fprintf(debug file_handle, "\t NTERVEDI ATE\ n");
fprintf(debug file_handl e,

“\t\tModified Julian Date [days] (njd) = %f\n", njd)
fprintf(debug file_ handl e,

"\t\ttine difference [sec] (aldiff)
fprintf(debug_file_handle,

%wf\n", aldiff);

"\t\tnutation number (numsel c) = %\ n", nunsel c);
fprintf(debug file_handl e,
"\t\tnutation nunber (nunmterm = %\n", nunterm;

fprintf(debug file_ handl e,

"\t\tGreenwi ch Hour Angle [rad] (gha) = %f\n", gha);
fprintf(debug_file_handle,

"\t\torder of magnetic field (morder) = %\n", morder);
fprintf(debug file_handle,

"\t\ts/c position vector [km{ (s_c _pos) = %f,%uf,%f\n",

s _c_pos[0],s_c_pos[1l],s _c_pos[2]);

fprintf(debug_file_handle,

"\t\ttinme of request [sec] (use t_request see above) \n");

}

if (ref_type == 4)
for (i=0; i<3 ; i++)
ref _vector[i] = mag_field[i];
el se
for (i=0; i<3 ; i++)
ref vector[i] = mag field unit[i];
br eak;

/* Performcase for orbit normal unit vector request */

case 6:

/* Debug : Internediate */

if (debug_l evel [RF] > | NPUT)
fprintf(debug file_handl e,
"\t\tlast normal unit vector time [sec] (t_o_ref) = %f\n",
t o ref);

if ((t_request - t o ref) >t wait)

Get O bi t Normal (orbit_normal);
t_o ref =t_request;
}
for (i=0; i<3 ; i++)
ref _vector[i] = orbit_normal[i];
br eak;

76

SEL-94-003

C Code Examples

/* Performcase for s/c to Mon unit vector request using the RSL
* routine c_sunlunp */

case 7:

i f (debug |evel [RF] > | NPUT)
fprintf(debug_file_handle,

"\t\tlast noon vector time [sec] (t_mref) = %Bf\n",t_mref);

if ((t_request - t_mref) >t _wait)
cal date = SecsToCal endar (t _request);

c_packst (cal date, starray);
c_calnmd (starray, &rjd);

c_sunlunp(njd,t_request, sun, noon);
Get Moon (noon, m pos);

t_ mref =t_request;
i f (debug_l evel [RF] > | NTERMEDI ATE)

fprintf(debug file_ handl e, "\t NTERVEDI ATE\ n");
fprintf(debug_file_handle,

"\t\tModified Julian Date [days] (njd) = %f\n", njd)
fprintf(debug file_handl e,

"\t\ttinme of request [sec] (use t_request see above) \n");

}
}
for (i=0; i<3; i++)

ref _vector[i] = mpos[i];
br eak;

/* Performcase for s/c to Earth unit vector request */
case 8:
if (debug_l evel [RF] > | NPUT)
fprintf(debug file_ handl e,
"\t\tlast Earth vector tine [sec] (t_e ref) = %f\n",t e ref);
if ((t_request - t_e ref) >t _wait)

CGet Eart h(e_pos);

t eref =t _request;

}
for (i=0; i<3 ; i++)

ref _vector[i] = e_pos[i];
br eak;

SEL-94-003 77

C Code Examples

} /* end switch */
i f (debug_l evel [RF] > OUTPUT)

fprintf(debug file_handle, "\t OQUTPUT\ n");
fprintf(debug file_ handl e,
"\t\trequested reference vector (ref _vector) = %f,%f,%f\n",
ref vector[O0],ref _vector[1],ref _vector[2]);

}

if (debug_l| evel [RF] > TRACE)
fprintf(debug file handle, "EXIT Get Ref erence\n\n");

return,

} /* end */

78 SEL-94-003

C Code Examples

9.3 IncludeFilee HD_ reference.h

/***
*

FI LE NAME: HD reference. h
PURPCSE: Defines all reference data vari abl es.

GLOBAL VARI ABLES:

Vari abl es Type Descri ption

epos doubl e[3] S/Cto Earth unit vector

ephemfile lu | ong FORTRAN | ogi cal unit nunber
for the epheneris file

ephem fil e_nane char [30] Nane of the epheneris file

ephem et hod char Met hod for conputing

epheneris information:

F = Use epheneris file
A = Conpute anal ytically
usi ng Kepl eri an
el ement s
kepl eri an doubl e[6] Kepl erian orbital elenents

at the epoch tine

(orbital _t_epoch):

[1] Semi major axis [kn]

[2] Eccentricity

[3] Inclination [rad]

[4] Right ascension of
t he ascendi ng node

E O S B R T . B I T T R T R N T R T B N N N B R R R

[rad]
[5] Argunment of perigee
[rad]

[6] Mean anonmaly [rad]
m_or der | ong O der of magnetic field
m_pos doubl e[3] S/C to Moon unit vector
mag field doubl e[3] Earth magnetic field vector

[
mag_field unit doubl e[3] Earth magnetic field unit

vect or

SEL-94-003 79

C Code Examples

b B T B I T S R B B R S R A R T R R R N B R S T R R I R .

maxi t

MJ_E

NUMPTS

orbit_nornal

orbital t_epoch

S_C_pos

s_c_vel

S_pos

t b ref

t e ref

t_mref

t o ref

t_rv_ref

t s ref

THREEB

ttol

| ong

doubl e

i nt

doubl e[3]

doubl e

doubl e[3]

doubl e[3]

doubl e[3]

doubl e

doubl e

doubl e

doubl e

doubl e

doubl e

doubl e

doubl e

Maxi mum numnber of
iterations to converge
the true anomaly

Earth gravitational
constant [km3/sec”2]

Nunber of points used by
t he EPHEMRD i nt er pol at or

Orbit normal unit vector

Base epoch tine of the
orbital elements [sec]

S/ C position vector [knj

S/ C vel ocity vector
[knml sec]

S/Cto Sun unit vector

Tinme of last calcul ated
Earth magnetic field
vector [sec]

Time of last calculated s/c
to Earth unit vector
[sec]

Time of last calculated s/c
to Moon unit vector [sec]

Time of last calcul ated
orbit normal unit vector
[sec]

Time of last calculated s/c
position and velocity
vect or s[sec]

Time of last calculated s/c
to Sun unit vector [sec]

Gravi tational constant of
perturbations [Km2]

Tol erance in the
cal cul ati ons of the true
anomal y [rad]

80

SEL-94-003

C Code Examples

* 12-17-93 J.

04-06-94 J.

* 05-10-94 J.

| STORY
hor
Pr ogr ammer

Pr ogr ammer
Pr ogr anmer

* DEVELOPMENT H
*

* Dat e Aut
*

* 09-23-93 J.

* 10-07-93 J.

* 12-02-93 J

Pr ogr ammer

Pr ogr ammer

Pr ogr ammer

27

Rel ease

Descri pti on of Change

Prol og and PDL

Control | ed

I nt egrated new RSL
routines

Added maxit and ttol
added MJ E and THREEB
as #defines

Corrected the THREEB
val ue

Added epheneris read
capability

***/

#define MJE
#defi ne THREEB
#defi ne NUMPTS

extern | ong

extern doubl e
extern char

extern char

extern doubl e
extern | ong

extern doubl e
extern doubl e
extern doubl e
extern | ong

extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e
extern doubl e

398600. 8
66042. 0

4

ephem file_lu;

e_pos[3];
ephem fil e_nange[30] ;

ephem net hod,;
kepl eri an[6] ;

m or der ;
m pos[3] ;

mag_field[3];

mag_field unit[3];

maxi t ;

orbit_normal [3];
orbital t_ epoch;
s_c_pos[3];
s_c_vel [3];
s_pos[3];
t b ref;
t_e ref;
t_mref;
t_o_ref;
t rv_ ref;
t_s ref;

ttol

SEL-94-003

81

BIBLIOGRAPHY

Atterbury, M., ESA Style Guide for 'C' Coding, Expert
Solutions Australia Pty. Ltd., Melbourne, Australia (1991)

Computer Sciences Corporation, SEAS System Development
Methodology (Release 2) (1989)

Indian Hill C Style and Coding Standards, Bell Telephone
Laboratories, Technical Memorandum 78-5221 (1978)

Kernighan, B., and Ritchie, D., The C Programming Language,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1978)

Minow, M., A C Style Sheet, Digital Equipment Corporation,
Maynard, Massachusetts

Oualline, S., C Elements of Style, M&T Publishing, Inc., San
Mateo, California (1992)

Wood R., and Edwards, E., Programmer’s Handbook for Flight
Dynamics Software Development, SEL-86-001 (1986)

SEL-94-003 83

INDEX

A

Abnormal termination
conditions

in file prolog 19
Abort statement 25
Algorithm 20

in file prolog 19

PDL 19
Allocation functions 42
ANSI C 3, 37,57, 58
Array boundaries 38

Assighment

operator 43

statement 44
Assumptions

in file prolog 19
Author

in file prolog 19
Automatic variable 40

initializing 40

B

Bind operands 43

Blank lines 5
overuse 5

Block comments 7
Boxed comments 7

Braces 48
Braces-Stand-Alone
method 48

Breadth-first approach
ordering functions
28

Break statement 55

C

C binding 11
Call statement 21
Capitalization 11
Case statement 23
Cast operator 41, 43
Change id
in file prolog 19
Comma
operator 43, 44
spacing 5
Comments 6
and PDL 6
block 7
boxed 7
file prolog 6
function prolog 6
inline 7, 8
README file 6
short 7

Compound
statements 48

Conditional
expressions 45
nested 48
operator 43

const
modifier 11, 38
vs. define 39

Constant
formatting 37
long 39
macros 28, 38
names 11
numerical 38

Constraints
in file prolog 19

D

Data declarations
external 28
Data hiding 14
Data sections
encapsulation 3
Data structures
encapsulation 3
Date
in file prolog 19
Declaration
extern 3, 28, 33
external variables
33
function
parameters 32
variable 39
define
vs. const 39
Definitions
external 28
non-static 28
static external 28
variable 39
Description of change
in file prolog 19
Development history
in file prolog 19
Directive
include 27
do for statement 24

do until statement 25

SEL-94-003

85

Index

do while statement
24,55

E

else if statement 51
Encapsulation 3, 14
data sections 3
data structures 3
files 3
function sections 3
enum 11, 28
Enumeration types 11,
38
names 11
Error handling 55
Error messages
in file prolog 19
Exception handling 25,
55
Expressions
conditional 45

extern 3, 28, 33

External data
declarations 28

External references
in file prolog 19
External variables 3, 28
declarations 33
in file prolog 19
non-static 28
static 28
with functions 29

File organization
schema 17
File prolog 6, 18
abnormal
termination
conditions 19
algorithm 19
assumptions 19
author 19
change id 19
constraints 19
date 19
description of
change 19
development
history 19
error messages 19
external references
19
external variables
19
file name 18
file references 19
in release 19
notes 19
PDL 19
purpose 18
requirements
references 19
restrictions 19
warning messages
19
Filename suffixes 16

Floating point
numbers 39

for statement 54

parameters
declaration 32
prolog 6, 31
function name 31
parameters 31
return value 31
separating 28
sequence 28
with external
variables 29

G

Global variables 28
goto statement 55

H

Hard-coding
array boundaries 38
numerical constants
38

Header files 3, 14
prolog 20
time.h 14

Hexadecimal numbers
39

Hidden variable 10, 33

if else statement 50
if statement 50

if then else statement
22

F Function 31 if then statement 22
File allocation 42 Include directive 27
encapsulation 3 alphabetical listing Indentation 6
header 14 of 28 four spaces 6
Makefile 15 macros 28 Information hiding 3
module 15 name 11, 43 example 4
name function prolog 31 Inline comments 7, 8
in file prolog 18 ordering , Internal variables 33
organization 17 breadth-ﬂrr']st declaration 33
?:fglr:)eMnigs, 14 schema 31 Iteration con;r40|53
in file prolog 19 organization statements 24,
schema 31 do for 24
86 SEL-94-003

Index

do until 25

do while 24, 55
for 54

while 54

L

Labels 55

Libraries
math.h 15
standard 14
stdio.h 14

Long constants 39

Loops 48
indices 33
nested 26

M

Macros
constant 28
function 28

main() 28
Maintainability 3
Makefile 15
example 60
math.h 15
Module file 15

N

Names 3, 8

and hidden
variables 10

C binding 11

constant 8, 11

enumeration types
11

file 8

function 8, 11, 31, 43

long variable 6

standard 9

standard filename
suffixes 16

standard suffixes 10

type 11

variable 4, 10

variables 8

Nested

conditionals 48

if statements 51

loops 26
Non-static external
definitions 28

Notes
in file prolog 19
Null pointer 42

Numbers 39
floating point 39
hexadecimal 39

Numerical constants
38

O

Operators
assighment 43
binding operands

43
cast 41, 43
comma 43, 44
conditional 43
formatting 43
parentheses 43
precedence 44
primary 43
semicolons 43
side-effects 44
unary 43

Organization
file 17
functions 31
program 13
statements 47

P

Paragraphing 5, 33
Parameters
function prolog 31

Parentheses
operator 43
precedence 44

PDL 20
comments 6
exception handling
25

general guidelines
20
in file prolog 19
iteration control
statements 24
do for 24
do until 25
do while 24
selection control
statements 21
case 23
if then 22
if then else 22
sequence
statements 21
call 21
return 21
severe error
handling 25
abort 25
undo 26
types of statements
21

Performance
guidelines 58
real-time systems

58

Pointer conversions 42
allocation functions
42
null 42
size 42
Pointer types 42
Portability
guidelines 57
standard library 57
two’s complement
57
word size 57

Precedence
operators 44
rules 46

Primary operator 43

Program
files 13
organization 13

Prolog
file 18
function 31

SEL-94-003

87

Index

header file 20

Purpose
in file prolog 18

Q

Qualifiers 40

R

Readability 3
README file 6, 14

Real-time systems
portability 58
Release
in file prolog 19
Requirements
references
in file prolog 19
Restrictions
in file prolog 19
Return
sequence
statement 21
statement 34
multiple returns 35
single return 35
value
function prolog 31

S

Schema
file organization 17
function
organization 31
program
organization 13
Scope 3
variables
example 4
Selection control
statements 50
case 23
else if 51
if 50
if else 50
if then 22
if then else 22

nested if 51
PDL 21
switch 53

Semicolons 43

Sequence

of functions 28
Sequence statements
21, 47

call 21

return 21

Severe error handling
statement 25, 55
abort 25
break 55
goto 55
undo 26

Short comments 7

Side-effect 44
order 48

Size 39, 42
integer 38, 57
pointers 57
portability 57
word 57

sizeof 42, 48, 49

Spaces 4,5
and operators 43
comma spacing 5
PDL indentation 20
reserved words 49
white space 3

Standard libraries 14
portability 57
Statement 47
assighment 44
break 26, 55
call 21
case 23
compound 48
do for 24
do until 25
do while 24, 55
else if 51
exception handling
25
for 54
goto 26, 55
if 50
if else 50

if then 22
if then else 22
iteration control 24,
53
nested if 51
return 21, 34
selection control 21,
50
sequence 21, 47
severe error
handling 25
side-effect order 48
switch 53
while 54
Statement
paragraphing 33
Static external
definitions 28
stdio.h 14, 15, 17, 27
Structured code 26, 55
Structures 40
Style 1
Suffixes
flename 16

Switch statement 53

T

Termination conditions
in file prolog 19
time.h 14
Two’s complement
arithmetic 57
Type
conversions 41
enumeration 11, 38
names 11
pointer 42

Typedef 11, 28

U

Unary operator 43
Undo statement 26

88

SEL-94-003

Index

\

Variable
automatic 40
declarations 39
definitions 39
external 3, 28
formatting 37
global 28
hidden 10, 33
internal 33
names 10
scope 4

Visibility 3

W

Warning messages
in file prolog 19
While statement 54

White space 4
blank lines 5
indentation 6
spaces 5

Word size 57

SEL-94-003 89

SEL-94-003

91

