Homework 2

Exercise 0.1 Prove that the following are not regular languages.

- 1. $\{0^n : n \text{ is a perfect square}\}.$
- 2. $\{0^n : n \text{ is a perfect cube}\}.$
- 3. $\{0^n : n \text{ is a power of } 2\}.$
- 4. The set of strings of 0's and 1's whose length is a perfect square.
- 5. The set of strings of 0's and 1's that are of the form ww, that is, some string repeated.
- 6. The set of strings of 0's and 1's that are of the form ww^R , that is, some string followed by its reverse. (The reversal of a string $a_1a_2...a_n$ is the string written backwards, that is, $a_na_{n-1}...a_1$.
- 7. The set of strings of 0's and 1's of the form $w\overline{w}$, where \overline{w} is formed from w by replacing all 0's by 1's, and vice-versa; e.g. $\overline{011} = 100$, and 011100 is an example of a string in the language.
- 8. The set of strings of the form $w1^n$, where w is a string of 0's and 1's of length n.

Exercise 0.2 Show that the regular languages are closed under the following operations: (Hint: it is easiest to start with a DFA for L and perform a construction to get the desired language.)

- 1. $min(L) = \{w : w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L\}.$
- 2. $max(L) = \{w : w \text{ is in } L \text{ and for no } x \text{ other than } \varepsilon \text{ is } wx \text{ in } L\}.$
- 3. $init(L) = \{w : \text{for some } x, wx \text{ is in } L\}.$

Exercise 0.3 Give an algorithm to tell whether two regular languages L_1 and L_2 have at least one string in common.

* Exercises above are from Introduction to Automata Theory, Languages, and Computation, 3rd Edition: Exercises 4.1.2, 4.2.6, 4.3.4