Homework 3

Exercise 0.1 Suppose L is a regular language with alphabet Σ . Give an algorithm to tell whether L contains at least 100 strings.

Exercise 0.2 If $w = a_1 a_2 \ldots a_n$ and $x = b_1 b_2 \ldots b_n$ are strings of the same length, define alt(w, x) to be the string in which the symbols of w and x alternate, starting with w, that is, $a_1 b_1 a_2 b_2 \ldots a_n b_n$. If L and M are languages, define alt(L, M) to be the set of strings of the form alt(w, x), where w is any string in L and x is any string in M of the same length. Prove that if L and M are regular, so is alt(L, M).

Exercise 0.3 If L is a language, and a is a symbol, then $a \setminus L$ is the set of strings w such that aw is in L. For example, if $L = \{a, aab, baa\}$, then $a \setminus L = \{\varepsilon, ab\}$. Prove that if L is regular, so is $a \setminus L$.

Exercise 0.4 Given the DFA of Table 1, draw the table of distinguishabilities for this automaton and construct the minimum-state equivalent DFA.

	0	1
$\rightarrow A$	В	Е
В	\mathbf{C}	\mathbf{F}
*C	D	Η
D	Е	Η
Ε	\mathbf{F}	Ι
*F	G	В
G	Η	В
Η	Ι	\mathbf{C}
*I	Α	Е

Table 1: DFA to minimize

* Exercises above are from Introduction to Automata Theory, Languages, and Computation, 3rd Edition: Exercises 4.2.3, 4.2.7, 4.3.2, 4.4.2