Homework 4

Design context-free grammars for the first two exercises.

Exercise 0.1 The set $\{a^i b^j c^k : i \neq j \text{ or } j \neq k\}$, that is, the set of strings of a's followed by b's followed by c's, such that there are either a different number of a's and b's or a different number of b's and c's, or both.

Exercise 0.2 The set of all strings of a's and b's that are not of the form ww, that is, not equal to any string repeated.

Exercise 0.3 Show that every regular language is a context-free language. Hint: Construct a CFG by induction on the number of operators in the regular expression.

Exercise 0.4 A CFG is said to be right-linear if each production body has at most one variable, and that variable is at the right end. That is, all productions of a right-linear grammar are of the form $A \rightarrow wB$ or $A \rightarrow w$, where A and B are variables and w some string of zero or more terminals.

- 1. Show that every right-linear grammar generates a regular language. Hint: Construct an ε -NFA that simulates leftmost derivations, using its state to represent the lone variable in the current left-sentential form.
- 2. Show that every regular language has a right-linear grammar. Hint: Start with a DFA and let the variables of the grammar represent states.

* Exercises above are from Introduction to Automata Theory, Languages, and Computation, 3rd Edition: Exercises 5.1.1B, 5.1.1C, 5.1.3, 5.1.4