Pthreads (POSIX Threads)

» a POSIX standard (IEEE 1003.1c) API for
user thread creation and synchronization.

 API specifies behavior of the thread library,
Implementation 1s up to development of the
library.

« Common in UNIX operating systems, but
not in Windows.

Pthread commands

« The pthread_create function creates a new thread. It takes
four arguments:
— athread variable or holder for the thread,
— athread attribute,
— the function for the thread to call when it starts execution, and
— an argument to the function. For example:

pthread t a_thread;

pthread attr t a thread attribute;

void thread function(vold *argument);
char *some argument;

pthread create(&a thread,
a_thread attribute,
(void *) &thread function,
(void *) &some argument) ;

From http://dis.cs.umass.edu/~wagner/threads html/tutorial.html

http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

Pthread Creation

 All Pthread programs must include the
pthread.h header file

.- Pthread t pid declares the thread identifier

A thread has a set of attributes set by the
pthread attr t attr declaration, with
pthread attr init (&attr)

 The thread itself is created with
pthread create (&pid, &attr, &func, &args)

where func(args) is a function to be run in
the new thread.

Pthread example code

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner (void *param); /* the thread */

main (int argc, char *argv][])

{

pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */
1if (argc !'= 2) {
fprintf (stderr, "usage: a.out <integer wvalue>\n");
exit ()
}
1if (atoi(argv([l]) < 0) {
fprintf (stderr,"%d must be >= 0\n" ,atoi(argv[l])) ;
exit (); /* atoil converts string to integer*/

Page 1

Pthread example code

/* get the default attributes */
pthread attr init (&attr) ;
/* create the thread */
pthread create (&tid, &attr, runner, argv([l]);
/* now wait for the thread to exit */
pthread join (tid, NULL) ;
printf ("sum = %d\n", sum) ;
}
/* The thread will begin control in this function */
voilid *runner (void *param)
{
int upper = atoil (param);
int i,
sum = 0;
if (upper > 0) {
for (i = 1; 1 <= upper; 1it++)
sum += 1i;
}
pthread exit (0);

} Page 2

he thread process

main
|

Initialization Code

pthread_create
» 2"d Thread

Main Code
Runner code
pthread_join \
l< pthread_exit(0)

Done

he fork process

Parent
|

Initialization Code

fork()
» Child
Parent’s Code
Child’s Code
wait() \
l< exit()

Done

Thread Attributes

e Scope
— The scope may be process-wide or system-wide

— After creating an attribute object (eg. attr), the scope is
set by pthread attr setscope ()

— If scope is defined PTHREAD SCOPE_ SYSTEM, then the
thread is “bound” and the kernel can “see” the thread.

— If scope is defined PTHREAD SCOPE PROCESS, then the

thread 1s “unbound’ and the kernel does not see the
thread (default).

Thread Attributes

e Detach State

— The detach state determines if the thread will be
joinable from another thread.

— After creating an attribute object (eg. attr), the detach
state Is set by pthread attr setdetachstate ()

— |If detach state is defined PTHREAD CREATE DETACHED,
then the thread is “detached” and the thread resources
will be discarded on termination.

— |If detach state is defined PTHREAD CREATE JOINABLE,
then the thread exit status and resources will be saved
until the thread is joined by another thread (default).

Thread Creation and Joining

Detached thread

L]
"
Main L1
\ “a

Thread Thr create thr join thr exit

Joinable thread

Thread Attributes
e Stack Address

— The stack address specifies the base address of the
stack for the thread.

— After creating an attribute object (eg. attr), the stack

address Is set by
pthread attr setstackaddr ()

— The stack address may be defined, but with care!

— If stack address Is defined NULL, then the system
defines a stack address for the thread (default).

Thread Attributes
e Stack Size

— The stack size specifies the size of the stack, in bytes,
for the thread.

— After creating an attribute object (eg. attr), the stack

address Is set by
pthread attr setstacksize ()

— The stack address may be defined to a given value
greater than PTHREAD STACK MIN bytes.

— If stack size is defined NULL, then stack size Is set to
the system default (default).

Simple Thread Creation

Solaris

(void *) foo(int argqg);

int arg;

thr create(NULL, NULL, foo, (void *) arg, NULL, NULL);

pthread

(void *) foo(int arg);
int arg;
pthread create (NULL, NULL, foo, (void *) arg);

Simple Thread Creation

0S/2

VOID foo (ULONG argqg) ;

ULONG arg;

TID ThreadID;

ULONG stacksize = 0x500;

DosCreateThread (&ThreadID, (PFNTHREAD) foo, arg, NULL, stacksize);

Windows NT

DWORD foo (DWORD arg) ;

DWORD arg;

DWORD ThreadID;

CreateThread (NULL, NULL, (LPTHREAD START ROUTINE) foo,
(LPVOID) arg, NULL, &ThreadID);

Solaris Threads and Pthreads

Solaris

 Reader/writer locks (many readers, single writer)
« Ability to suspend and continue a single thread
* Ability to create daemon threads

* Ability to set and get a level of concurrency

Pthreads

* Ability to cancel threads

« Attribute objects (thread and synchronization attributes)
 Scheduling policies

Thread Creation and Joining

E ot .
’ / N
/ / AN
’ ’ 4
/ /
D ’ ’
/ /
/ /
/ /
/
/
’
/
/
/
/
/

Main

RN ®
B []"

Thread Thr create thr join thr exit processing

T —————— > [] @

Thread Creation and Joining

 There Is no parent/child relationship between
threads as there Is for processes.

» Threads can be created and joined by many
different threads in the process

 In the example
— Main thread creates A, B and C, then exits
— Thread B is created suspended

— Main thread exits with thr_exit(), not exit() (which
would have ended the whole process)

— Main thread’s exit status and resources are held until it
IS joined by thread C

Thread Create and Join Example

Variable initialization

#define REENTRANT
#include <stdio.h>
#include <thread.h>

/ * Function prototypes for thread routines */
void *sub a(void *);

volid *sub Db (
void *sub c(
volid *sub d(void
void *sub e (
void *sub £ (

thread t thr a, thr b, thr c¢;

Page 1

Thread Create and Join Example

Main thread

vold main ()

{

thread t main thr;

main thr = thr self(); /* returns thread ID for self */
printf ("Main thread = %d\n", main thr);

if (thr create(NULL, 0, sub b, NULL, THR SUSPENDED|THR NEW LWP,
&thr b))
fprintf (stderr,"Can't create thr b\n"), exit(l);

if (thr create(NULL, 0O, sub a, (void *)thr b, THR HEW LWP,

&thr a))
fprintf (stderr,"Can't create fchr a\n"), exit(l);

Page 2

Thread Create and Join Example

Main thread

if (thr create(NULL, 0O, sub ¢, (void *)main thr, THR NEW LWP,
&thr c))
fprintf (stderr,"Can't create thr c\n"), exit(l) ;

printf ("Main Created threads A:%d B:%d C:%d\n", thr a, thr b,
thr c) ;

printf ("Main Thread exiting...\n");

thr exit((void *)main thr) ;

}

Page 3

Thread Create and Join Example

Thread A

void *sub a(void *argqg)

{

thread t thr b = (thread t) arg;
thread t thr d;

int 1i;

printf ("A: In thread A...\n");
if (thr create(NULL, O, sub d, (void*)thr b, THR NEW LWP,

sthr d))
fprintf (stderr, "Can't create thr d\n"), exit(l);

Thread A immediately creates thread D

Page 4

Thread Create and Join Example

Thread A

printf ("A: Created thread D:%d\n", thr d);
/* process

*/

for (1=0; 1<1000000* (int)thr self 0; i++)

.
7

printf ("A: Thread exiting...\n")

14

thr exit ((void *)77)

.
14

}

On exit, Thread A resources are reclaimed by the OS, since it
was created with the THR_DETACHED flag.

Page 5

Thread Create and Join Example

Thread B

void * sub b(void *arg)

{

int 1i;

printf ("B: In thread B...\n");

/* process

*/

for (1=0; 1<1000000* (int)thr self(); i++) ;
printf ("B: Thread exiting...\n") ;

thr exit ((void *)66);

}

Thread B was created suspended, so it runs only when
thread D continues it with thr continue ()

Page 6

Thread Create and Join Example

Thread C

void * sub c(void *argqg)

{

vold *status;

int 1i;

thread t main thr, ret thr;

main thr - (thread t)arg;

printf ("C: In thread C...\n");

if (thr create(NULL, O, sub f, (void *}O0,

NULL))

THR BOUND | THR DAEMON,

fprintf (stderr, "Can't create thr f\n"), exit(l);

Thread C creates thread F, then joins the main thread...

Page 8

Thread Create and Join Example

Thread C

printf ("C: Join main thread\n");

if (thr join(main thr, (thread t *)&ret thr, &status))
fprintf (stderr, "thr joiln Error\n"), exit(l);

printf ("C: Main thread (
sd\n",
main thr, ret thr, (int) status);

o\°

d) returned thread (%d) w/status

/* simulated processing

*/

for (1=0; 1<1000000* (int)thr self (); 1++) ;
printf ("C: Thread exiting...\n")
thr exit ((void *)88);

}

4

Page 9

Thread Create and Join Example

Thread D

void * sub d(void *argq)

{

thread t thr b = (thread t) arg;
int 1 ;

thread t thr e, ret thr;

volid *status;

printf ('D: In thread D...\n");

if (thr_create(NULL, 0, Sub_e, NULL, THR NEW LWP, &thr_e))
fprintf (stderr,"Can'b create thr e\n"), exit(l);

printf ("D: Created thread E:%d\n", thr e);

Thread D creates thread E,

Page 10

Thread Create and Join Example

Thread D

printf ("D: Continue B thread = %d\n", thr b) ;
thr continue (thr b) ;

printf ("D: Join E thread\n");

1f (thr join(thr e, (thread t *)&ret thr, &status))
fprintf (stderr,"thr join Error\n"), exit(l);

Thread D continues thread B by making thr_continue() call, then tries to
join thread E, blocking until thread E has exited.

Page 11

Thread Create and Join Example

Thread D

printf ("D: E thread (%d) returned thread (%d) w/status %d\n",
thr e,

ret thr, (int) status);

/* simulated processing
*/
for (1=0; 1<1000000 * (int)thr self(); i++);

printf ("D: Thread exiting ...\n");

thr exit ((void *)55);
}

Thread D should be the last non-daemon thread running. When it exits, it
should stop the daemon thread and stop execution of the process.

Page 11

Thread Create and Join Example
Thread E

void * sub e (void *argq)
{

int 1 ;

thread t ret thr;

void *status;

printf ("E: In thread E...\n");
printf ("E: Join A Chread\n");

1f (thr join(thr a, (thread t *)é&ret thr, &status))
fprintf (stderr, "thr join Error\n"), exit (1) ;

printf ("E:A thread (%d) returned thread (%d) w/staCus %d\n"
ret thr, ret thr, (int) status);

Page 12

Thread Create and Join Example

Thread E

printf ("E: Join B thread\n");
if (thr join(thr b, (thread t *)&ret thr, &status))

fprint f(stderr,"thr join Error\n"), exit(1l1l;

printf ("E: B thread (%d) returned thread (
thr b,
ret thr, (int) status) ;

o\°

d) w/sLatus %d\n",

printf ("E: Join C thread\n") ;

1f (thr join(thr c¢, (thread t *)é&ret thr, & status))
fprint f(stderr,"thr join Error\n"), exit (1)

°
14

Thread E tries to join threads B and C, waiting for each of these threads to exit.

Page 13

Thread Create and Join Example

Thread E

printf ("E: C thread (%d) returned thread (%d) w/status %d\n"
thr c,

ret thr, (int) ytatus) ;

4

/* simulated processing
*/
for (1=0; 1<1000000* (int)thr self (); i++);

printf ("E: Thread exiting...\n"),
thr exit ((void *)-44);
}

Then thread E exits, holding its resources until joined by thread D.

Page 14

Thread Create and Join Example

Thread F

void *sub f (void *argqg)
{
int 1i;

printf ("F: In thread F...\n");

while (1) {
for (1i=0,-1< 10000000, -1i++) ;
printf ("F: Thread F is still running...\n") ;

}
}

Thread F was created as a bound daemon thread, running on its own LWP
until all the nondaemon threads have exited the process.

- useful for background processing

Page 15

