
1

Pthreads (POSIX Threads)

• a POSIX standard (IEEE 1003.1c) API for

user thread creation and synchronization.

• API specifies behavior of the thread library,

implementation is up to development of the

library.

• Common in UNIX operating systems, but

not in Windows.

2

Pthread commands
• The pthread_create function creates a new thread. It takes

four arguments:
– a thread variable or holder for the thread,

– a thread attribute,

– the function for the thread to call when it starts execution, and

– an argument to the function. For example:

pthread_t a_thread;

pthread_attr_t a_thread_attribute;

void thread_function(void *argument);

char *some_argument;

pthread_create(&a_thread,

 a_thread_attribute,

 (void *)&thread_function,

 (void *)&some_argument);

From http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

3

Pthread Creation

• All Pthread programs must include the
pthread.h header file

• Pthread_t pid declares the thread identifier

• A thread has a set of attributes set by the
pthread_attr_t attr declaration, with
pthread_attr_init(&attr)

• The thread itself is created with
pthread_create(&pid,&attr,&func,&args)

where func(args) is a function to be run in
the new thread.

4

Pthread example code

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the thread */

main(int argc, char *argv[])

{

 pthread_t tid; /* the thread identifier */

 pthread_attr_t attr; /* set of thread attributes */

 if (argc != 2) {

 fprintf(stderr, "usage: a.out <integer value>\n");

 exit();

 }

 if (atoi(argv[l]) < 0) {

 fprintf(stderr,"%d must be >= 0\n" ,atoi(argv[l])) ;

 exit(); /* atoi converts string to integer*/

 }

Page 1

5

Pthread example code

 /* get the default attributes */

 pthread_attr_init(&attr) ;

 /* create the thread */

 pthread_create (&tid, &attr, runner, argv[l]);

 /* now wait for the thread to exit */

 pthread_join (tid, NULL) ;

 printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */

void *runner(void *param)

{

 int upper = atoi(param);

 int i;

 sum = 0;

 if (upper > 0) {

 for (i = 1; i <= upper; i++)

 sum += i;

 }

pthread_exit(0);

} Page 2

6

The thread process

main

2nd Thread
pthread_create

Initialization Code

pthread_join

Main Code

Runner code

pthread_exit(0)

Done

7

The fork process

Parent

Child
fork()

Initialization Code

wait()

Parent’s Code

Child’s Code

exit()

Done

8

Thread Attributes

• Scope

– The scope may be process-wide or system-wide

– After creating an attribute object (eg. attr), the scope is

set by pthread_attr_setscope()

– If scope is defined PTHREAD_SCOPE_SYSTEM, then the

thread is “bound” and the kernel can “see” the thread.

– If scope is defined PTHREAD_SCOPE_PROCESS, then the

thread is “unbound” and the kernel does not see the

thread (default).

9

Thread Attributes

• Detach State

– The detach state determines if the thread will be

joinable from another thread.

– After creating an attribute object (eg. attr), the detach

state is set by pthread_attr_setdetachstate()

– If detach state is defined PTHREAD_CREATE_DETACHED,

then the thread is “detached” and the thread resources

will be discarded on termination.

– If detach state is defined PTHREAD_CREATE_JOINABLE,

then the thread exit status and resources will be saved

until the thread is joined by another thread (default).

10

Thread Creation and Joining

Main

Thread Thr_create thr_join thr_exit

Detached thread

Joinable thread

11

Thread Attributes

• Stack Address
– The stack address specifies the base address of the

stack for the thread.

– After creating an attribute object (eg. attr), the stack

address is set by
pthread_attr_setstackaddr()

– The stack address may be defined, but with care!

– If stack address is defined NULL, then the system

defines a stack address for the thread (default).

12

Thread Attributes

• Stack Size
– The stack size specifies the size of the stack, in bytes,

for the thread.

– After creating an attribute object (eg. attr), the stack

address is set by
pthread_attr_setstacksize()

– The stack address may be defined to a given value

greater than PTHREAD_STACK_MIN bytes.

– If stack size is defined NULL, then stack size is set to

the system default (default).

13

Simple Thread Creation

(void *) foo(int arg);

int arg;

thr_create(NULL, NULL, foo, (void *) arg, NULL, NULL);

(void *) foo(int arg);

int arg;

pthread_create(NULL, NULL, foo, (void *) arg);

Solaris

pthread

14

Simple Thread Creation

VOID foo(ULONG arg);

ULONG arg;

TID ThreadID;

ULONG stacksize = 0x500;

DosCreateThread(&ThreadID, (PFNTHREAD) foo, arg, NULL, stacksize);

OS/2

Windows NT

DWORD foo(DWORD arg);

DWORD arg;

DWORD ThreadID;

CreateThread(NULL, NULL, (LPTHREAD_START_ROUTINE) foo,

 (LPVOID) arg, NULL, &ThreadID);

15

Solaris Threads and Pthreads

• Reader/writer locks (many readers, single writer)

• Ability to suspend and continue a single thread

• Ability to create daemon threads

• Ability to set and get a level of concurrency

Solaris

Pthreads

• Ability to cancel threads

• Attribute objects (thread and synchronization attributes)

• Scheduling policies

16

Thread Creation and Joining

Main

Thread Thr_create thr_join thr_exit processing

A

D

E

C

F

B

P

P

P

P

P

17

Thread Creation and Joining

• There is no parent/child relationship between
threads as there is for processes.

• Threads can be created and joined by many
different threads in the process

• In the example

– Main thread creates A, B and C, then exits

– Thread B is created suspended

– Main thread exits with thr_exit(), not exit() (which
would have ended the whole process)

– Main thread’s exit status and resources are held until it
is joined by thread C

18

Thread Create and Join Example

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/ * Function prototypes for thread routines */

void *sub_a(void *);

void *sub_b(void *);

void *sub_c(void *);

void *sub_d(void *);

void *sub_e(void *);

void *sub_f(void *);

thread_t thr_a, thr_b, thr__c;

Page 1

Variable initialization

19

Thread Create and Join Example

Page 2

Main thread

void main()

{

thread_t main_thr;

main_thr = thr_self(); /* returns thread ID for self */

printf("Main thread = %d\n", main_thr);

if (thr_create(NULL, 0, sub_b, NULL, THR_SUSPENDED|THR_NEW_LWP,

&thr__b))

 fprintf(stderr,"Can't create thr_b\n"), exit(l);

if (thr_create(NULL, 0, sub_a, (void *)thr_b, THR_HEW_LWP,

&thr_a))

 fprintf(stderr,"Can't create fchr_a\n"), exit(l);

20

Thread Create and Join Example

Page 3

Main thread

if (thr_create(NULL, 0, sub_c, (void *)main_thr, THR_NEW_LWP,

&thr_c))

 fprintf(stderr,"Can't create thr_c\n"), exit(1) ;

printf("Main Created threads A:%d B:%d C:%d\n", thr_a, thr_b,

thr_c) ;

 printf("Main Thread exiting...\n");

thr_exit((void *)main_thr) ;

}

21

Thread Create and Join Example

Page 4

Thread A

void *sub_a(void *arg)

{

thread_t thr_b = (thread_t) arg;

thread_t thr_d;

int i;

printf("A: In thread A...\n");

if (thr_create(NULL, 0, sub_d, (void*)thr_b, THR_NEW_LWP,

&thr_d))

 fprintf(stderr, "Can't create thr_d\n"), exit(l);

Thread A immediately creates thread D

22

Thread Create and Join Example

Page 5

Thread A

printf("A: Created thread D:%d\n", thr_d);

/* process

*/

for (i=0; i<1000000*(int)thr_self 0; i++) ;

 printf("A: Thread exiting...\n") ;

thr_exit((void *)77) ;

}

On exit, Thread A resources are reclaimed by the OS, since it
was created with the THR_DETACHED flag.

23

Thread Create and Join Example

Page 6

Thread B

void * sub_b(void *arg)

{

int i;

printf("B: In thread B...\n");

/* process

*/

for (i=0; i<1000000*(int)thr_self(); i++) ;

 printf("B: Thread exiting...\n") ;

thr_exit((void *)66);

}

Thread B was created suspended, so it runs only when
thread D continues it with thr_continue()

24

Thread Create and Join Example

Page 8

Thread C

void * sub__c(void *arg)

{

void *status;

int i;

thread_t main_thr, ret_thr;

main_thr - (thread_t)arg;

printf("C: In thread C...\n");

if (thr_create(NULL, 0, sub_f, (void *}0, THR_BOUND|THR_DAEMON,

NULL))

 fprintf(stderr, "Can't create thr_f\n"), exit(l);

Thread C creates thread F, then joins the main thread…

25

Thread Create and Join Example

Page 9

Thread C

 printf("C: Join main thread\n");

if (thr_join(main_thr,(thread_t *)&ret_thr, &status))

 fprintf(stderr, "thr_join Error\n"), exit(l);

printf("C: Main thread (%d) returned thread (%d) w/status

%d\n",

main_thr, ret_thr, (int) status);

/* simulated processing

*/

for (i=0; i<1000000*(int)thr_self(); i++) ;

printf("C: Thread exiting...\n") ;

thr_exit((void *)88);

}

26

Thread Create and Join Example

Page 10

Thread D

void * sub_d(void *arg)

{

thread_t thr_b = (thread_t) arg;

int i ;

thread_t thr_e, ret_thr;

void *status;

printf('D: In thread D...\n");

if (thr_create(NULL, 0, sub_e, NULL, THR_NEW_LWP, &thr_e))

fprintf(stderr,"Can'b create thr_e\n"), exit(l);

printf("D: Created thread E:%d\n", thr_e);

Thread D creates thread E,

27

Thread Create and Join Example

Page 11

Thread D

printf("D: Continue B thread = %d\n", thr_b) ;

thr_continue(thr_b) ;

printf("D: Join E thread\n");

if(thr_join(thr_e,(thread_t *)&ret_thr, &status))

 fprintf(stderr,"thr_join Error\n"), exit(1);

Thread D continues thread B by making thr_continue() call, then tries to

join thread E, blocking until thread E has exited.

28

Thread Create and Join Example

Page 11

Thread D

printf("D: E thread (%d) returned thread (%d) w/status %d\n",

thr_e,

ret_thr, (int) status);

/* simulated processing

*/

for (i=0; i<1000000 *(int)thr_self(); i++);

printf("D: Thread exiting ...\n");

thr_exit((void *)55);

}

Thread D should be the last non-daemon thread running. When it exits, it

should stop the daemon thread and stop execution of the process.

29

Thread Create and Join Example

Page 12

Thread E

void * sub_e(void *arg)

{

int i ;

thread_t ret_thr;

void *status;

printf("E: In thread E...\n");

printf("E: Join A Chread\n");

if(thr_join(thr__a,(thread_t *)&ret_thr, &status))

 fprintf(stderr,"thr_join Error\n"), exit(1) ;

printf("E:A thread (%d) returned thread (%d) w/staCus %d\n",

ret_thr, ret_thr, (int) status);

30

Thread Create and Join Example

Page 13

Thread E

printf("E: Join B thread\n");

if(thr_join(thr_b,(thread_t *)&ret_thr, &status))

 fprint f(stderr,"thr_join Error\n"), exit(11;

printf("E: B thread (%d) returned thread (%d) w/sLatus %d\n",

thr_b,

ret_thr, (int) status) ;

printf("E: Join C thread\n") ;

if(thr_join(thr_c,(thread_t *)&ret_thr, & status))

 fprint f(stderr,"thr_join Error\n"), exit(1) ;

Thread E tries to join threads B and C, waiting for each of these threads to exit.

31

Thread Create and Join Example

Page 14

Thread E

printf("E: C thread (%d) returned thread (%d) w/status %d\n" ,

thr_c,

ret_thr, (int) ytatus) ;

/* simulated processing

*/

for (i=0; i<1000000*(int)thr_self(); i++);

printf("E: Thread exiting...\n"),

thr_exit((void *)-44);

}

Then thread E exits, holding its resources until joined by thread D.

32

Thread Create and Join Example

Page 15

Thread F

 void *sub_f(void *arg)
{

int i;

printf("F: In thread F...\n");

while (1) {

 for (i=0,-i< 10000000,-i++) ;

 printf("F: Thread F is still running...\n") ;

 }

}

Thread F was created as a bound daemon thread, running on its own LWP
until all the nondaemon threads have exited the process.

 - useful for background processing

