Pthreads (POSIX Threads)

» a POSIX standard (IEEE 1003.1c) API for
user thread creation and synchronization.

 API specifies behavior of the thread library,
Implementation 1s up to development of the
library.

« Common in UNIX operating systems, but
not in Windows.




Pthread commands

« The pthread_create function creates a new thread. It takes
four arguments:
— athread variable or holder for the thread,
— athread attribute,
— the function for the thread to call when it starts execution, and
— an argument to the function. For example:

pthread t a_thread;

pthread attr t a thread attribute;

void thread function(vold *argument);
char *some argument;

pthread create( &a thread,
a_thread attribute,
(void *) &thread function,
(void *) &some argument) ;

From http://dis.cs.umass.edu/~wagner/threads html/tutorial.html



http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

Pthread Creation

 All Pthread programs must include the
pthread.h header file

.- Pthread t pid declares the thread identifier

A thread has a set of attributes set by the
pthread attr t attr declaration, with
pthread attr init (&attr)

 The thread itself is created with
pthread create (&pid, &attr, &func, &args)

where func(args) is a function to be run in
the new thread.



Pthread example code

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner (void *param); /* the thread */

main (int argc, char *argv][])

{

pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */
1if (argc !'= 2) {
fprintf (stderr, "usage: a.out <integer wvalue>\n");
exit ()
}
1if (atoi(argv([l]) < 0) {
fprintf (stderr,"%d must be >= 0\n" ,atoi(argv[l])) ;
exit (); /* atoil converts string to integer*/
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Pthread example code

/* get the default attributes */
pthread attr init (&attr) ;
/* create the thread */
pthread create (&tid, &attr, runner, argv([l]);
/* now wait for the thread to exit */
pthread join (tid, NULL) ;
printf ("sum = %d\n", sum) ;
}
/* The thread will begin control in this function */
voilid *runner (void *param)
{
int upper = atoil (param);
int i,
sum = 0;
if (upper > 0) {
for (i = 1; 1 <= upper; 1it++)
sum += 1i;
}
pthread exit (0);
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Thread Attributes

e Scope
— The scope may be process-wide or system-wide

— After creating an attribute object (eg. attr), the scope is
set by pthread attr setscope ()

— If scope is defined PTHREAD SCOPE_ SYSTEM, then the
thread is “bound” and the kernel can “see” the thread.

— If scope is defined PTHREAD SCOPE PROCESS, then the

thread 1s “unbound’ and the kernel does not see the
thread (default).



Thread Attributes

e Detach State

— The detach state determines if the thread will be
joinable from another thread.

— After creating an attribute object (eg. attr), the detach
state Is set by pthread attr setdetachstate ()

— |If detach state is defined PTHREAD CREATE DETACHED,
then the thread is “detached” and the thread resources
will be discarded on termination.

— |If detach state is defined PTHREAD CREATE JOINABLE,
then the thread exit status and resources will be saved
until the thread is joined by another thread (default).



Thread Creation and Joining
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Thread Attributes
e Stack Address

— The stack address specifies the base address of the
stack for the thread.

— After creating an attribute object (eg. attr), the stack

address Is set by
pthread attr setstackaddr ()

— The stack address may be defined, but with care!

— If stack address Is defined NULL, then the system
defines a stack address for the thread (default).



Thread Attributes
e Stack Size

— The stack size specifies the size of the stack, in bytes,
for the thread.

— After creating an attribute object (eg. attr), the stack

address Is set by
pthread attr setstacksize ()

— The stack address may be defined to a given value
greater than PTHREAD STACK MIN bytes.

— If stack size is defined NULL, then stack size Is set to
the system default (default).



Simple Thread Creation

Solaris

(void *) foo(int argqg);

int arg;

thr create(NULL, NULL, foo, (void *) arg, NULL, NULL);

pthread

(void *) foo(int arg);
int arg;
pthread create (NULL, NULL, foo, (void *) arg);



Simple Thread Creation

0S/2

VOID foo (ULONG argqg) ;

ULONG arg;

TID ThreadID;

ULONG stacksize = 0x500;

DosCreateThread (&ThreadID, (PFNTHREAD) foo, arg, NULL, stacksize);

Windows NT

DWORD foo (DWORD arg) ;

DWORD arg;

DWORD ThreadID;

CreateThread (NULL, NULL, (LPTHREAD START ROUTINE) foo,
(LPVOID) arg, NULL, &ThreadID);



Solaris Threads and Pthreads

Solaris

 Reader/writer locks (many readers, single writer)
« Ability to suspend and continue a single thread
* Ability to create daemon threads

* Ability to set and get a level of concurrency

Pthreads

* Ability to cancel threads

« Attribute objects (thread and synchronization attributes)
 Scheduling policies



Thread Creation and Joining
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Thread Creation and Joining

 There Is no parent/child relationship between
threads as there Is for processes.

» Threads can be created and joined by many
different threads in the process

 In the example
— Main thread creates A, B and C, then exits
— Thread B is created suspended

— Main thread exits with thr_exit(), not exit() (which
would have ended the whole process)

— Main thread’s exit status and resources are held until it
IS joined by thread C




Thread Create and Join Example

Variable initialization

#define REENTRANT
#include <stdio.h>
#include <thread.h>

/ * Function prototypes for thread routines */
void *sub a(void *);

volid *sub Db (
void *sub c(
volid *sub d(void
void *sub e (
void *sub £ (

thread t thr a, thr b, thr c¢;
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Thread Create and Join Example

Main thread

vold main ()

{

thread t main thr;

main thr = thr self(); /* returns thread ID for self */
printf ("Main thread = %d\n", main thr);

if (thr create(NULL, 0, sub b, NULL, THR SUSPENDED|THR NEW LWP,
&thr b))
fprintf (stderr,"Can't create thr b\n"), exit(l);

if (thr create(NULL, 0O, sub a, (void *)thr b, THR HEW LWP,

&thr a))
fprintf (stderr,"Can't create fchr a\n"), exit(l);
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Thread Create and Join Example

Main thread

if (thr create(NULL, 0O, sub ¢, (void *)main thr, THR NEW LWP,
&thr c))
fprintf (stderr,"Can't create thr c\n"), exit(l) ;

printf ("Main Created threads A:%d B:%d C:%d\n", thr a, thr b,
thr c) ;

printf ("Main Thread exiting...\n");

thr exit((void *)main thr) ;

}
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Thread Create and Join Example

Thread A

void *sub a(void *argqg)

{

thread t thr b = (thread t) arg;
thread t thr d;

int 1i;

printf ("A: In thread A...\n");
if (thr create(NULL, O, sub d, (void*)thr b, THR NEW LWP,

sthr d))
fprintf (stderr, "Can't create thr d\n"), exit(l);

Thread A immediately creates thread D
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Thread Create and Join Example

Thread A

printf ("A: Created thread D:%d\n", thr d);
/* process

*/

for ( 1=0; 1<1000000* (int)thr self 0; i++ )

.
7

printf ("A: Thread exiting...\n")

14

thr exit ((void *)77)

.
14

}

On exit, Thread A resources are reclaimed by the OS, since it
was created with the THR_DETACHED flag.
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Thread Create and Join Example

Thread B

void * sub b(void *arg)

{

int 1i;

printf ("B: In thread B...\n");

/* process

*/

for ( 1=0; 1<1000000* (int)thr self(); i++ ) ;
printf ("B: Thread exiting...\n") ;

thr exit ((void *)66);

}

Thread B was created suspended, so it runs only when
thread D continues it with thr continue ()
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Thread Create and Join Example

Thread C

void * sub c(void *argqg)

{

vold *status;

int 1i;

thread t main thr, ret thr;

main thr - (thread t)arg;

printf ("C: In thread C...\n");

if (thr create(NULL, O, sub f, (void *}O0,

NULL) )

THR BOUND | THR DAEMON,

fprintf (stderr, "Can't create thr f\n"), exit(l);

Thread C creates thread F, then joins the main thread...
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Thread Create and Join Example

Thread C

printf ("C: Join main thread\n");

if (thr join(main thr, (thread t *)&ret thr, &status))
fprintf (stderr, "thr joiln Error\n"), exit(l);

printf ("C: Main thread (
sd\n",
main thr, ret thr, (int) status);

o\°

d) returned thread (%d) w/status

/* simulated processing

*/

for ( 1=0; 1<1000000* (int)thr self (); 1++ ) ;
printf ("C: Thread exiting...\n")
thr exit ((void *)88);

}

4
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Thread Create and Join Example

Thread D

void * sub d(void *argq)

{

thread t thr b = (thread t) arg;
int 1 ;

thread t thr e, ret thr;

volid *status;

printf ('D: In thread D...\n");

if (thr_create(NULL, 0, Sub_e, NULL, THR NEW LWP, &thr_e))
fprintf (stderr,"Can'b create thr e\n"), exit(l);

printf ("D: Created thread E:%d\n", thr e);

Thread D creates thread E,
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Thread Create and Join Example

Thread D

printf ("D: Continue B thread = %d\n", thr b) ;
thr continue (thr b) ;

printf ("D: Join E thread\n");

1f (thr join(thr e, (thread t *)&ret thr, &status))
fprintf (stderr,"thr join Error\n"), exit(l);

Thread D continues thread B by making thr_continue() call, then tries to
join thread E, blocking until thread E has exited.
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Thread Create and Join Example

Thread D

printf ("D: E thread (%d) returned thread (%d) w/status %d\n",
thr e,

ret thr, (int) status);

/* simulated processing
*/
for ( 1=0; 1<1000000 * (int)thr self(); i++ );

printf ("D: Thread exiting ...\n");

thr exit ((void *)55);
}

Thread D should be the last non-daemon thread running. When it exits, it
should stop the daemon thread and stop execution of the process.
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Thread Create and Join Example
Thread E

void * sub e (void *argq)
{

int 1 ;

thread t ret thr;

void *status;

printf ("E: In thread E...\n");
printf ("E: Join A Chread\n");

1f (thr join(thr a, (thread t *)é&ret thr, &status))
fprintf (stderr, "thr join Error\n"), exit (1) ;

printf ("E:A thread (%d) returned thread (%d) w/staCus %d\n"
ret thr, ret thr, (int) status);
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Thread Create and Join Example

Thread E

printf ("E: Join B thread\n");
if (thr join(thr b, (thread t *)&ret thr, &status))

fprint f(stderr,"thr join Error\n"), exit(1l1l;

printf ("E: B thread (%d) returned thread (
thr b,
ret thr, ( int) status) ;

o\°

d) w/sLatus %d\n",

printf ("E: Join C thread\n" ) ;

1f (thr join(thr c¢, (thread t *)é&ret thr, & status))
fprint f(stderr,"thr join Error\n"), exit (1)

°
14

Thread E tries to join threads B and C, waiting for each of these threads to exit.
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Thread Create and Join Example

Thread E

printf ("E: C thread (%d) returned thread (%d) w/status %d\n"
thr c,

ret thr, (int) ytatus) ;

4

/* simulated processing
*/
for ( 1=0; 1<1000000* (int)thr self (); i++);

printf ("E: Thread exiting...\n"),
thr exit ((void *)-44);
}

Then thread E exits, holding its resources until joined by thread D.
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Thread Create and Join Example

Thread F

void *sub f (void *argqg)
{
int 1i;

printf ("F: In thread F...\n");

while (1) {
for (1i=0,-1< 10000000, -1i++) ;
printf ("F: Thread F is still running...\n") ;

}
}

Thread F was created as a bound daemon thread, running on its own LWP
until all the nondaemon threads have exited the process.

- useful for background processing
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