
CMSC 23700
Winter 2014

Introduction to Computer Graphics Project 3
February 11

Animation and shadows
Due: Monday, February 24, 10pm

1 Summary

In this project you will implement skeletal-based character animation and shadow mapping. The
project can logically be divided into three steps: skeletal-animation, skinning the skeleton with a
mesh, and rendering shadows. Each of these steps is non-trivial, so you should start immediately.

2 Skeletal animation

Skeletal animation is a technique for animating meshes, such as those that represent creatures in a
3D game. The basic idea is that the model is defined by a hierarchical skeleton, which consists of a
tree of joints, and one or more triangle meshes, or skins, that are attached to the skeleton. Each joint
(except the root) has a parent joint, a position in its parent’s coordinate space, and an orientation.
Rather than directly animate the mesh, the animator animates the skeleton and the mesh follows the
skeleton’s motion.

An animation is specified as a sequence of poses, which represent the skeleton’s position at
various points in time. Each pose is a complete skeleton; rendering occurs by first interpolating
between poses, then computing the vertex positions of the skin(s) for the interpolated skeleton, and
finally drawing the mesh.

3 Animating the skeleton

The file guard-data.cxx contains the definition of an animated character.1 In order to ren-
der the skeleton, you will first have to compute an interpolated set of joints. This is done by lin-
early interpolating the positions and spherically interpolating the orientations between the previous
keyframe and the next keyframe. The sample code includes a function DrawSkeleton that will
draw a skeleton as a stick figure. Also, the character will stand on a plane represented as the floor.
The sample code provides a renderer for drawing the floor. Both the skeleton and floor renderer
use the proj-3/data/basic shader that we provide. This shader converts the vertices into
their clip coordinates and assigns each fragment a uniform primary color. As you progress through
the assignment, you will need to create a different shader for the floor in order to perform lighting
calculations.

1Normally, such definitions are loaded from files.



4 Skinning the model

Instead of specifying the position of the vertices, we compute them from the positions of the joints
(after interpolation). For each vertex V , there are nV weights W1, . . . , WnV . The position of V is
then defined by

Pos(V ) =

nV∑
i=1

Pos(Wi)

where the position of a weight W with associated joint J is defined by

Pos(W ) = bW (Pos(J) +RJvW )

where Pos(J) is the interpolated position of J , RJ is the interpolated orientation of J , bW is W ’s
bias, and vW is W ’w position in J’s coordinate space. In the sample code, RJ is represented
as a unit quaternion; the common library provides operations on quaternions, such as spherical
interpolation and transforming a vector by a quaternion.

5 Shadows

Shadows are one of the most important visual cues for understanding the relationship of objects
in a 3D scene. As discussed in class, there are a number of techniques that can be used to render
shadows using OpenGL. For this project, we will use shadow mapping.

The idea is to compute a map (i.e., texture) that identifies which screen locations are shadowed
with respect to a given light. We do this by rendering the scene from the light’s point of view
into the depth buffer. Then we copy the buffer into a depth texture that is used when rendering the
scene. When rendering the scene, we compute a 〈s, t, r〉 texture coordinate for a point p, which
corresponds to the coordinates of that point in the light’s clipping space. The r value represents
the depth of p in the light’s view, which is compared against the value stored at 〈s, t〉 in the depth
texture. If r is greater than the texture value, then p is shadowed. To implement this technique,
we must construct a transformation that maps eye-space coordinates to the light’s clip-space (see
Figure 1). Let

• Mmodel be the model matrix

• Mview be the eye’s view matrix

• Mlight be the light’s view matrix, and

• Plight be the light’s projection matrix.

To map a vertex p to the light’s homogeneous clip space, we first apply the model’s model matrix
(Mmodel), then the light’s view matrix (Mlight), and finally the light’s projection matrix (Plight).
After the perspective division, the coordinates will be in the range [−1 . . . 1], but we need values
in the range [0 . . . 1] to index the depth texture, so we add a scaling transformation (S(0.5)) and a
translation (T(0.5, 0.5, 0.5)).

The sample code defines a fixed directional light l. You will need to compute the diffuse (Dl)
intensity vectors using the techniques of Project 2. You should also compute the shadow factor Sl,

2



Model space

World space

View
eye-space

Light
eye-space

View
cip-space

Light
clip-space

Light's projection
matrix

Light's view matrix

Model matrix

View matrix

Projection matrix

Figure 1: The coordinate-space transforms required for shadow mapping

which is 0.5 when the pixel is in shadow and 1.0 otherwise. Then, assuming that the input color is
Cin and L is the set of enabled lights, the resulting color should be

Cout = clamp

(∑
l∈L

SlDl

)
Cin

5.1 User interface

The sample code provides a user interface that includes commands to toggle between rendering
modes (‘m’) and controls to change the viewing position.

6 Extra credit

You may add one or both of the following features to your project for extra credit. If you are
registered for CMSC33700, then these features are required.

• Some (but not all) of the skins have specular and bump map textures. If the color texture for
a skin is in the file "foo.png", then the specular map is in "foo_s.png" and the bump
map is in "foo_h.png". For extra credit, you may implement specular highlights and bump

3



mapping when rendering the model’s mesh. Note that the specular maps are three-channel
maps and thus do not specify an exponent.

• Another technique to improve the shadows when performing shadow mapping is to use
percentage-closer filtering (as described in lecture). The basic idea is to sample a region
of texels from the depth map around the depth-texel indexed by the fragment The result will
give a softer look on the shadow edges.

7 Hints

Break the project into stages; get each stage working before starting on the next.

1. get the skeleton animated,

2. compute the mesh and render it as a wireframe,

3. add the textures to the mesh,

4. render the shadow buffers, and

5. add shadowing to the rendering of the model.

The sample code contains a partially defined Guard class that can serve to encapsulate most of
your project code (see guard.hxx and guard.cxx).

Getting the shadowing to work is difficult, so you should try to get the other parts done by the
end of the first week so you have plenty of time for the last two steps.

Because the light is directional, you will need to use an orthographic projection when rendering
the shadow map. You can use the cs237::ortho function to setup the view matrix for the light.
You should make sure that the light’s view matrix includes the model entirely in order to produce
the correct shadowing. Also, since the light’s position is fixed, you can compute its model-view
and projection matrices at startup time. You can also precompute the texture matrix needed to map
eye-space vertices to the light’s clipping space.

You may find it useful to render the shadow map to the screen as a debugging aid. One way to
do this is to create a second window that is the shadowmap size. You can map the depth values to
a grey scale (i.e., 0 maps to black and 1 maps to white) using a simple shader. The GLFW library
supports multiple windows (or you can dump the shadow map to a file).

8 Submission

We will create a directory proj-3 in your CMSC 23700 Phoenix Forge repository. The projects will
be collected at 10:00pm on Monday February 24 from the repositories, so make sure that you have
committed your final version before then.

4


