
CMSC 22200 Computer Architecture
The University of Chicago Autumn 2015
Lab Assignment 1
Due: Thursday, October 22 at the beginning of class by hardcopy

In this lab assignment, we explore how to execute and profile (collect
performance data on) programs within the Marss simulator. Then, we
analyze the collected data to understand the mix of instructions in
each of the programs.

Marss is a full-system simulator based on the Intel X86 Architecture.
You can visit http://www.marss86.org/~marss86/index.php/Home to learn
more about Marss.

Please run Marss on a Linux machine in CSIL. To get it set up:

1. Download the file "marssx86.bash" that is included with this
assignment to your home directory on the CSIL machine.
2. Place the file in a directory you want to use for your
installation.
3. Run the command "bash marssx86.bash". This will retrieve the
software, compile it, and copy files that contain an installation of
Linux and some benchmarks (to run within the simulator) to your
machine. Note that while the Marss installation will be in your home
directory, and thus available on any CSIL machine, the other files
will be on the machine's hard drive (in "/local/your_cnet_id/"). Thus,
you must repeat this step if you switch to a different CSIL machine.

Part 1. Running Marss

Change to the directory that has been created for you and enter the
following command to run Marss:

$./qemu/qemu-system-x86_64 -m 512 -hda /local/your_cnet_id/marssx86/
disk-images/ubuntu-natty-lab1.qcow2

The "-m" option is to set the memory size of the simulated machine.
Here we set it to 512 MB.

A Qemu window will open and show the console of the emulated Linux
machine as it boots. To login, enter “root” for both the username and
password.

Q1. Provide a screenshot of the command you ran to start QEmu and the
Qemu window. We should be able to see your CNetID as part of the
prompt from the CSIL machine; please position windows so it is not

obstructed.

Part 2. Profiling Simple Programs

Computer architects profile programs to measure and analyze important
characteristics of how they run. Particularly when a program is
complex, profiling allows these characteristics to be determined much
faster and more simply than by inspecting the assembly code.
Architects are interested in knowing about performance characteristics
such as instruction count, cycle count, number of cache hits and
misses, mix of different instruction types, among others.

Marss is capable of reporting a vast number of different performance
characteristics including those we mentioned above. (When you see the
output from Marss, you will better appreciate just how much data it
collects. Virtually all of it is not relevant to this particular
assignment, and much of it is beyond the scope of this course. So,
you'll need to pick through the output to extract only the information
we need today.)

For this part, we provided two simple programs to profile and analyze
in terms of performance.

I. Bubble Sort
a. You can find the bubble_sort.c and bubble_sort.o files in the main
directory of the Qemu image.
b. Run Marss based on part 1. In order to simulate a program on Marss,
first you need to set the configuration. Use Ctrl-alt-2 to switch into
the Qemu configuration console. Type the following command:

simconfig -stats bubble_sort.st -logfile bubble_sort.log -machine
atom_core

The "-stats" option specifies the statistics output file name; "-
logfile" specifies the log file name; and "-machine" specifies the
processor model that you want to run on. To learn more about
"atom_core," see: http://en.wikipedia.org/wiki/Intel_Atom
c. Use control-alt-1 to switch back to the main Qemu window. Run the
following command line:

./start_sim; ./bubble_sort.o; ./stop_sim

The "start_sim" and "stop_sim" programs notify Marss to start or stop
simulation profiling.
d. Run bubble sorting for input sizes of 100 and 1000 elements. (When
you run the program, it will ask what size you want.) You can either
go back to the QEmu console to assign a different statistics file name
for the second (larger) run, or just perform two runs and later
separate them out from within the single file.

Now, on your real CSIL machine, check the statistics file, which has
been saved within the marss directory: bubble_sort.st. It has three
(long) sections, separated by lines with a lot of dashes. The three
sections represent statistics for kernel mode (operations performed by
the Linux OS); user mode (operations performed by the bubble sort
program); and the combination of the two. In this lab we are only
interested in user mode statistics, since they reflect the program we
run. (If you saved both runs of the bubble sort into the same file, it
actually has six sections: the first three are for the first run.)

Note that this file contains a lot of information. Part of the
challenge of this lab is to determine what information to pull out to
answer specific questions.

Q2.
a. How many instructions were executed for each input size?
How many cycles were taken for each input size?
(There are many instruction counts in the statistics file. Use the one
that is under the heading of "issue:". Note that there are sections
tabbed over hierarchically under "issue:" before the tabbing gets back
to the level immediately under "issue:". Skip over these and find the
instruction count that is just one tab level to the right of the tab
level of "issue:". And watch out for abbreviations....)
b. Given the complexity of bubble sort (O(n^2)), input size 1000
should have 100 times more executed instructions than input size 100.
Look at the C code and explain why this doesn't happen. (The answer
may be very counterintuitive to you. Hint: think of a third experiment
you can run to confirm your hypothesis; if your hypothesis is correct,
you will have enough data across the three runs to account for the
discrepancy very closely....)
c. Look at the "opclass" section for user mode in the statistics file.
i. Which operation types are related to load and store?
ii. Which operation types are related to control flow?
iii. Which operation types are related to procedure calls?
Plot a pie chart showing the percentage of operations for load and
store vs. other operations.
Plot a pie chart showing the percentage of operations for control flow
vs. other operations.
Plot a pie chart showing the percentage of operation for procedure
calls vs. other operations.

II. Fibonacci
Repeat the above steps for the Fibonacci program and input sizes
10,000 and 100,000.
Q3.
a. How many instructions were executed for each input size?
How many cycles were taken for each input size?
b. Given the complexity of Fibonacci is O(n) (for this "memoization"
version that only calculates the value of a given input once and

remembers it for other calls to the same function with the same
input), input size 100,0000 should have 10 times more executed
instructions than input size 10,000. Look at the C code and explain
why this doesn’t happen.
c. Plot a pie chart showing percentage of operations for load and
store vs. other operations.
Plot a pie chart showing percentage of operations for control flow vs.
other operations.
Plot a pie chart showing percentage of operations for procedure calls
vs. other operations.

Part 3. Profiling Real Benchmarks

Now we will run more sophisticated benchmarks.
The system we have provided also contains a directory: parsec-3.0,
which is a copy of the parsec benchmark suite. Parsec has various
types of benchmarks. In this lab we want to run blackscholes,
streamcluster, and swaptions.

Since these benchmarks have long runtimes, run them for 200 million
instructions. You can specify an instruction limit for simulations as
below:

simconfig -stopinsns 200m -stats name.st -logfile name.log -machine
atom_core

To run a Parsec benchmark, enter the following command:

$./start_sim; ./parsec-3.0/bin/parsecmgmt -a run -p BenchmarkName; ./
stop_sim

Q4.
a. How many instructions were executed for each benchmark?
How many cycles were taken for each program?
c. Plot a pie chart showing percentage of operations for load and
store vs. other types of operations.
Plot a pie chart showing percentage of operations for control flow vs.
other
operations.
Plot a pie chart showing percentage of operations for procedure calls
vs.
other operations.
d. How different are these benchmarks in terms of operation types?
Explain
what you infer from it.

