
CMSC 22200 Computer Architecture
The University of Chicago Autumn 2015
Lab Assignment 2
Due: Tuesday, November 10 at the beginning of class by hardcopy

In this lab assignment, we explore the effects of static and dynamic
pipelining techniques using the Marss simulator. By dynamic, we are
referring to superscalar in-order or out-of-order pipelines.

You will continue to use QEMU and your installation and disk image
from Lab 1. Refer back to the writeup for Lab 1 for details on
installation and use.

Effects of Different Pipelining Techniques
You will run Parsec benchmarks on two different cores; one of them
with a static pipeline and the other with a dynamic pipeline. The goal
is to observe the differences in performance of those cores.
1. Run Blackscholes and Swaptions from Parsec for 200m instructions on
the atom_core machine (if you still have your results from Lab 1, you
may refer back to them instead) and answer the following questions:
Q1. How many clock cycles are taken for each of the benchmarks?
Q2. How many instructions are committed (note: committed, not issued)
to finish each of the benchmarks?
Q3. Calculate IPC given the answers for Q1 and Q2 for each of the
benchmarks. (Remember that we briefly mentioned in class that IPC is
instructions per cycle, the reciprocal of CPI that we sometimes use
when we have a superscalar machine and CPI < 1. But, note that this is
not a superscalar machine.)
Q4. Is the IPC you calculated the same as the one listed in the commit
section?
Q5. Look at the fetch stage: how many instructions are fetched for
each of the benchmarks?
Q6. Why is the number of I-cache accesses different than the total
number of instructions fetched? What is the average ratio?
2. Run the same benchmarks on the single_core machine, which is a
superscalar and Out-Of-Order architecture. Answer the following
questions:
Q7. How many clock cycles are taken for each of the benchmarks?
Q8. How many instructions are committed to finish each of the
benchmarks? Is it almost the same as the number for atom_core?
3. Both machines ran the same programs, and use the same instructions
set.
Q9. Compute the CPI for both machines. What does this number mean for
how many instructions the machine can execute at a time?
Q10. Comment on the relative execution efficiency of these x86
implementations.
Q11. If they had the same clock rate, which one would be faster? By

how much?

4. Recall that a key technique to make the CISC x86 instruction set
fast is dynamic translation of the x86 instructions to simple u-ops.
Q12. Find the number of u-ops executed in each of the two
implementations in the statistics file. Is it different for the two
machines? What can you conclude from this?
5. Another key technique to make a CISC x86 instruction run fast is
fast decode of “simple” instructions, and slower decode for the
larger, more complex instructions. Find in the trace file information
about the “complex” and “fast” decode types.
Q13. What fraction of the instructions involves “fast” (simple)
decodes? Is it similar for the two architectures?
Q14. Do any of the instructions require the use of microcode on
single_core?
6. In the single_core machine, there are many instructions in
execution at the same time. As the numbers of instructions executed
simultaneously increases, an increasing number of values are read from
the “forwarding circuits”, or as Intel refers to them, the “reorder
buffer” or ROB and the rename table.
Q15. Find the number of values read and written from the reorder
buffer and the rename table.
Q16. Compare these to the number of “physreg_reads” and
“physreg_writes”. What fraction of the values used by the computation
actually come from the physical register file, as opposed to from
forwarding?
7. Both the atom_core and single_core implementations do branch
prediction.
Q17. What are the success rates for branch prediction? Is this a high
or low number?
Q18. Does this make the program look more like a bunch of short code
segments separated by branches, or like a single long stream of
instructions to the processor?
Q19. Compute the average number of instructions between mispredicted
branches.

