CMSC 23700 Introduction to Computer Graphics Project 1
Autumn 2015 October 2, 2015

Basic OpenGL Rendering
Due: Monday October 12 at 10pm

1 Summary

This project is the first part of a three-part project, in which you will implement a number of stan-
dard rendering techniques. The goals of this project are to get your feet wet with simple graphics
programming and to give you some quick feedback on the course submission and grading policies.

The project involves implementing a simple viewer that reads a scene from the file system
that consists of one or more objects and then rendering the objects using either wireframes or flat
shading. Your viewer should include controls for moving the camera.

2 Description

This project has three parts: loading, rendering, and user interface. We discuss each of these in
more detail below.

2.1 Loading

Upon startup, your program will load a scene to be displayed. A scene is represented by a directory
containing a JSON file called scene. json and one or more OBJ files. The scene. json file
contains a JSON object with two fields; a JSON object that specifies the initial camera position and
a JSON array that specifies the objects in the scene (see Figure 1 for an example). The initial camera
specification has five fields:

1. The size field specifies the initial window size (1024 x 768 in the example in Figure 1).
2. The fov field specifies the horizontal field of view in degrees (120° in the example).

3. The pos field is a point that specifies the initial position of the camera ({0, 3, —10) in the
example).

4. The look—-at field is a point that specifies the initial point at which the camera is looking
({0, 3, 0) in the example). Note that this value is not the camera’s direction vector.

5. The up field is a vector that specifies the initial up direction of the camera ({0, 1, 0) in the
example).



"camera" : {

"size" : { "wid" : 1024, "ht" : 768 },

"fov" : 120,

"posﬂ . { "X" . O, "y" . 3, "Z" . _10},

"look_at" . { "X" . O, "y" . 3, "Z" . O},

"up" . { "X" . 0, lly" 1, "Z“ . O}

bo
"objects" : [

{ "file" : "box.obj",
"pOS" . { "X" . O, "y" . O, "Z" . O},
"color" . { "r" . O’ "b" . l, "g" . O}

Figure 1: An example scene. json file

Each object is specified by three fields:

1. The f1ile field specifies a file name relative to the scene directory (box . ob 7 in the example
in Figure 1).

2. The pos field specifies the world-space coordinates at which the object should be placed (at
(0,0,0) in the example).

3. The color field specifies the color of the object as an RGB triple (the color blue in the
example).

We will provide a class Scene (see scene.hxx) that takes care of the details of loading the
scene description and object descriptions. Your code will use the scene object to initialize your view
state and object representations. In other words, your code should load the camera description into
your View object and it should initialize your OpenGL buffers from the objects descriptions.

2.2 Rendering

Your program should support two rendering modes. The first is a wire-frame mode, where just
the edges of the objects’s triangles are rendered. Look at the documentation for g1PolygonMode
to see how to do wireframe rendering. The second is a flat-shading mode, where the triangles
are rendered in the object’s color without any lighting calculations. To implement rendering, you
will need to write a basic shader program (you can use the same one for both wireframe and flat-
shading modes) and you will need to complete the implementation of the WireframeRenderer
and FlatShadingRenderer classes.!

2.3 User interface

Your viewer must support the following keyboard commands:

"You may make modifications to their common base class (Renderer) if you wish.



f F switch to flat-shading mode
wW switch to wireframe mode
g Q quit the viewer.

In addition, it should provide either keyboard or mouse-based camera controls that allow one to
view the scene from any point.

You should feel free to play with different schemes, but here is one possible strategy. Define
the horizontal plane to be the plane containing the camera perpendicular to the camera’s up vector.
Define the view axis to be the line through the look-at point that is perpendicular to the horizontal
plane. Then we could use the left and right arrow keys to rotate the camera around the view axis.
We can define another axis as the line in the horizontal plane through the look-at point that is
perpendicular to the vector from the look-at point to the camera and then let the up and down arrow
keys rotate the camera around it. Note that these rotations change the position and orientation of
the camera, so the axes also change. Lastly, we use the plus and minus keys to control moving the
camera towards and away from the look-at point. We would specify a minimum and maximum
distance to the look-at point to keep things under control.

3 Sample code

To get you started, we will seed your repository with sample code. The code will be organized into
a directory called proj1 with four subdirectories:

e build, which contains a Makefile for compiling your project.
e shaders, which is where you should put your shader source files.

e src, which will hold the C++ source code for your project. Initially, this directory contains
some scaffolding code to get you started.

e scenes, which contains sample scenes for you to test your program on.

4 Summary

For this project, you will have to do the following:

e Design a representation of objects that you can render in OpenGL and write code to convert
the OBJ representations to your representation.

e Set up the initial camera state from the scene; you will also need to connect this state to your
shader code.

e Write a simple shader that renders objects in solid color without lighting.
e Implement the rendering setup code for wireframe and flat-shading modes.

e Design and implement camera controls.



5 Submission

We have set up an svn repository for each student on the phoenixforge.cs.uchicago.edu
server and we will populate your repository with the sample code. You should commit the final
version of your project by 10:00pm on Monday October 12. Remember to make sure that your final
version compiles before committing!

History

2015-10-05 Corrected Ul description to match sample implementation.

2015-10-02 Original version.



