
CMSC 23700
Autumn 2015

Introduction to Computer Graphics Project 2
October 12, 2015

Shading and lighting
Due: Monday October 19 at 10pm

1 Summary

This assignment builds on your Project 1 code by adding directional lighting and texturing to your
renderer. You should start by fixing any issues with your Project 1 code.

2 Description

The focus of this project is on supporting two new rendering modes: diffuse rendering using a
directional light and texturing. In the first mode, you will compute the surface color of objects
based on the object’s color (as before) combined with the ambient and directional light. In texturing
mode, you will use texture mapping to determine the color, which will also be combined with the
lighting information.

2.1 Scenes

To support the new features, the scene description format has been extended with additional in-
formation and resources. Specifically, the scene.json file now contains information about the
scene’s lighting and the object models now have associated materials that are used to specify the
textures that will be applied to the objects. Figure 1 gives an example of the new scene description
format. We will provide a enhanced version of the Scene class that handles the new features. As
before, your code will use the scene object to initialize your view state and object representations.

The lighting field is a JSON object that has three fields:

1. The direction field is a vector that specifies the direction of the light (〈0,−1, 0〉 in the
example in Figure 1, which means that the light is shining from directly overhead).

2. The intensity field is an RGB triple that specifies the intensity of the light (〈0.8, 0.8, 0.8〉
in the example).

3. The ambient field is an RGB triple that specifies the intensity of the scene’s ambient light
(〈0.2, 0.2, 0.2〉 in the example).

OBJ files have mechanisms for associating materials with groups in a model. The materials are
defined in a separate file and are used to control the rendering of the triangles in the associated group.



{
"lighting" : {

"direction" : { "x" : 0, "y" : -1, "z" : 0},
"intensity" : { "r" : 0.8, "b" : 0.8, "g" : 0.8},
"ambient" : { "r" : 0.2, "b" : 0.2, "g" : 0.2}

},
"camera" : {

"size" : { "wid" : 1024, "ht" : 768 },
"fov" : 120,
"pos" : { "x" : 0, "y" : 3, "z" : -10},
"look-at" : { "x" : 0, "y" : 3, "z" : 0},
"up" : { "x" : 0, "y" : 1, "z" : 0}

},
"objects" : [

{ "file" : "box.obj",
"pos" : { "x" : 0, "y" : 0, "z" : 0},
"color" : { "r" : 0, "b" : 1, "g" : 0}

}
]

}

Figure 1: An example scene.json file

For the purposes of this project, you will continue to use the monochromatic shading of objects in
wireframe, flat-shading, and diffuse rendering modes. In texturing mode, however, you will use a
texture to define the color of the object. The texture’s name is specified by the diffuseMap field
of the Material structure. The Scene class provides a mapping from the texture names to 2D
images (cs237::image2d). You will need to initialize an OpenGL texture object from the image
data1 that you can then use when rendering the associated object.

2.2 Lighting

The scene description defines a single directional light. To compute the lighting at a point on an
object, you need to consider the following factors:

• the light’s direction, specified as a unit vector l,

• the light’s intensity Il,

• the ambient lighting intensity Ia,

• the color of the object Cobj, and

• the unit normal-vector to the surface at the point on the object n.

Then the computed illumination for the point is given by the equation

C = (Ia +max(0,−l · n)Il)Cobj

1The common code library provides the cs237::texture2D class to help with managing OpenGL texture
objects.

2



where the product of colors is computed as a per-channel multiplication (this operation is sometimes
called modulation).

Lighting is computed in the fragment shader, but you will need to the vertex normals to your
shader program, transform the normal vector in the vertex shader, and pass it to the rasterizer. Vertex
normals are provided as part of the OBJ file format. Note that interpolated normal vectors are not
guaranteed to be unit-length, so you will need to renormalize them in the fragment shader.

2.3 Texturing

Texturing mode uses the same lighting equation from above, but with the exception that the object’s
color (Cobj) will be determined by indexing into a texture. The OBJ file assigns texture coordinates
to each vertex, so you can create a vertex buffer for these and pass them in as an additional attribute
to the vertex shader. The vertex shader should then pass them on to the rasterizer, for linear inter-
polation. The interpolated coordinates are then used to index into the texture (called a sampler in
GLSL) in the fragment shader.

2.4 User interface

You will add support for two new commands to the Project 1 user interface:

d D switch to diffuse-rendering mode (no textures)
t T switch to textured mode

In addition, your viewer should provide the camera controls that you implemented in Project 1.

3 Sample code

Once the Project 1 deadline has passed, we will seed a proj2 directory with a copy of your source
code and shaders from Project 1. We will update this code with a new implementation of the Scene
class. The seed code will also include a new Makefile in the build directory and new scenes.

4 Summary

For this project, you will have to do the following:

• Fix any issues with your Project 1 code.

• Modify your Project 1 data structures to support lighting and texture mapping.

• Write a shader that renders objects using the directional light.

• Write a shader that renders objects using texture mapping.

• Add support for the new rendering modes to the UI.

3



5 Submission

We have set up an svn repository for each student on the phoenixforge.cs.uchicago.edu
server and we will populate your repository with the sample code. You should commit the final
version of your project by 10:00pm on Monday October 19. Remember to make sure that your final
version compiles before committing!

History

2015-10-12 Original version.

4


