
CMSC 28100-1 Spring 2015

Homework 1

April 3, 2015

Important notes about writing algorithms.

You may write algorithms in (pseudo)code or English, but they should be completely specified. For
example, saying

“Let (i, j) be the best edge satisfying this complicated critera”

is not acceptable. Saying

“Let j0 be the least j such that A[i, j] = 1”

is acceptable. Whenever we say “give an algorithm” we require three things:

• Describe the algorithm completely, as mentioned above.

• Prove that the algorithm correctly solves the problem it is supposed to. For example, for
Problem 1 below, you must prove that your algorithm returns a sequence of vertices that is
a valid path from s to t, if and only if there is such a path.

• Analyze the runtime of your algorithm. You may report the runtime using big-Oh O()
notation.

The problems in this homework are about graphs. Report the runtime as a function of the number
of vertices V and the number of edges E. For example, O(E logE + V 2).

Definition

A directed graph G consists of a set of vertices V (G) and a set of directed edges E(G) ⊆ V × V .
If there is an edge (u, v) ∈ E(G) we say that u is the source of the edge and v is the target of
the edge, and that u is a predecessor of v and v is a successor of u. A path in G is a sequence
of distinct vertices v0, ..., vn such that (vi, vi+1) is an edge (that is, in E(G)) for all i = 0, ..., n1.
Such a path is called a path from v0 to vn . The length of such a path is the number of edges in it,
that is, n (note that we started numbering vertices from v0 ). Unless explicitly stated otherwise,
all graphs here are directed. Graphs are given as input to algorithms by their adjacency matrices:
if the graph has n vertices then its vertices are labelled by the integers 1, ..., n, and the adjacency
matrix of a graph G is the matrix A such that A[i, j] = 1 if (i, j) ∈ E(G) and A[i, j] = 0 otherwise.

1



Homework Questions

1. Consider the following problem:

Problem: s-t PATH

Input: A directed graph G, and two vertices s, t ∈ V (G)

Output: A path from s to t, or “NOT CONNECTED” if there is no path from s to t in G

Show that this problem can be solved in polynomial time by giving an algorithm. Remember,
“giving an algorithm” requires the three steps mentioned above.

2. A shortest path from s to t is a path from s to t that is the shortest among all paths from s
to t. Consider the following variant of the above problem:

Problem: SHORTEST s-t PATH

Input: A directed graph G, and two vertices s, t ∈ V (G)

Output: A shortest path from s to t, or “NOT CONNECTED” if there is no path from s
to t in G.

Show that this problem can be solved in polynomial time by giving an algorithm. If there is more
than one shortest path, your algorithm may return any shortest path. If your algorithm from the
previous question already solves this problem, you dont have to repeat it, but you do have to prove
its correctness. That is, you still need to show that your algorithm always returns a shortest path
from s to t whenever there is any path from s to t.

3. A graph is strongly connected if for any two vertices u, v ∈ V (G) there is a path from u to
v. Show that the problem of deciding whether a graph is strongly connected can be solved in
polynomial time, as in the previous questions.

If you wish you may use algorithms from the previous questions as sub-routines in this algo-
rithmyou dont have to rewrite them or re-prove their correctness, but you still have to prove the
correctness of you algorithm for this problem assuming the correctness of the algorithms for the
previous questions.

4. If there is an edge (u, v) in a directed graph G, then u and v are said to be neighbors or
adjacent to one another. An undirected path in a (directed) graph G is a sequence of distinct
vertices v0, ..., vn such that for each i = 0, ..., n − 1, vi and vi+1 are adjacent, in other words, at
least one of (vi, vi+1) and (vi+1, vi) is an edge for each i.

A graph is connected if for any pair of vertices u, v ∈ V (G), there is an undirected path from u
to v. Show that the problem of determining whether a graph is connected is in polynomial time by
giving an algorithm. You may use any algorithm from previous questions as subroutines, as before.

2



5. Consider the following problem and algorithm to solve it:

Problem: SUBSET-SUM

Input: Numbers x1, ..., xk and a target number T

Output: YES if there is a subset S ⊆ {1, ..., k} such that
∑

i∈S xi = T , and “NO” otherwise

Let A[i, t] be 0 for all i = 1, ..., k and all t = 1, ..., T

For t = 1, ..., T

Let A[1, t] be 1 if x1 = t and 0 otherwise

End For

For i = 2, ..., k

For t = 1, ..., T

If xi = t, then set A[i, t] = 1. End If.

If A[i− 1, t] = 1, then set A[i, t] = 1. End If.

If A[i− 1, t− xi] = 1, then set A[i, t] = 1. End If.

End For

End For

If A[k, T ] = 1, output “YES”, otherwise output “NO”.

(a) Prove that the above algorithm correctly solves SUBSET-SUM.

(b) Analyze the running time of the above algorithm in terms of k and T .

(c) Why does the above algorithm not show that SUBSET-SUM can be solved in polynomial
time? Hint: what is the size, in bits, of the input as a function of k and T ? Then what is
the running time in terms of the input size?

3


