CMSC 28100-1 Spring 2015 Homework 8

May 22, 2015

1. (7 points) Show that if $\mathbf{P} = \mathbf{NP}$, then every language in \mathbf{NP} is \mathbf{NP} -complete, except for \emptyset and Σ^* .

2. Consider the following language:

 $K := \{ (M, x, 1^t) \mid M \text{ is a NTM that accepts } x \text{ within } t \text{ steps} \}$

(a) (2 points) Show that $K \in \text{NTIME}(n)$.

(b) (6 points) Show directly (not by reduction from another known NP-complete language) that K is NP-complete.

3. (10 points) Show that if $SAT \in \mathbf{P}$, then there is a deterministic polynomial-time Turing machine M such that for all formulas φ , if φ is satisfiable then $M(\varphi)$ outputs a satisfying assignment to φ , and otherwise M rejects. This is called solving the "search version" of SAT (searching for a witness, rather than merely determining if one exists).

4. (10 points) A language L is *p*-selective if there is a polynomial-time (deterministic) Turing machine M such that 1) $M(x, y) \in \{x, y\}$ –given (x, y), M outputs either x or y– for every pair of strings (x, y), and 2) if at least one of x or y is in L, then M(x, y) outputs a string in L – which is necessarily either x or y, by (1).

Show that if SAT is p-selective, then $\mathbf{P} = \mathbf{NP}$. *Hint:* The solution to the previous problem contains a relevant idea.

5. (NOT GRADED, but if you want to submit a solution you will get feedback. Good practice of your understanding of Cook-Levin) A boolean formula $\varphi(x_1, ..., x_k)$ is a succinct encoding of a string s of length 2^k , as follows: the *i*-th bit of s is 1 if and only if $\varphi(i) = 1$, where we write *i* as *k*-bit binary number (some of its leading bits may be 0). For any formula φ , let decode(φ) denote the corresponding succinctly encoded string s. For any language *L*, define a new language SUCCINCT-*L* by

SUCCINCT- $L := \{ \varphi \mid \operatorname{decode}(\varphi) \in L \}.$

Let **NEXP** be the complexity class **NEXP** = $\bigcup_k \text{NTIME}(2^{(n^k)})$. A language *L* is **NEXP**complete if $L \in \text{NEXP}$ and every $L' \in \text{NEXP}$ polynomial-time reduces to *L* (the same as in **NP**-completeness).

Show that SUCCINCT-SAT is **NEXP**-complete. *Hint:* mimic the proof of the Cook-Levin theorem.