
PROJECT	 IDEA:	
	
The idea behind the project is to take a streaming feed and store all of the
data points in a mock distributed database, while at the same time
processing a random sample of the data points to estimate the features
(mean and variance) of the data set. It would be based on a main
activeMQ queue, many of the EIP's in camel, and then a secondary queue
that would process a randomly assigned subset of the data and send it to a
proxy for an application.

The data would originally come from standard in, a file, or possibly a real-
life stream of data (from an ftp type site?) if it is easy enough to find and
attach that. It would be some sort of data that was time-stamped, but still
had a logical grouping. (Like I said, real life data like that would be nice,
but if it is hard to find I could simulate temperature data or something
similar.)

A message translator would be used to assign a hash value after entry to
the main activeMQ queue. This would determine where in distributed
storage (left side of diagram) it would go using the pub-sub pattern. The
distributed storage would consist of identical objects that would hold java
lists and be proxies for computers that would actually exist elsewhere if the
system were real. It would be routed appropriately using a content-based
router based on the hash value. This could also implement a content filter
to remove the hash value or reformat the message. This portion would be
asynchronous.

If the hash value of the message was within a range where it would be
randomly selected for processing, it would go to a secondary queue. This
queue would be responsible with providing up-to-date estimation values for
mean and variance to an application based on the randomly selected data
points. This sampled data used for real-time processing would use a
splitter to send it to two separate objects for processing and then an
aggregator to join the results. It is still a little unclear how the type of data
used will fit this splitter/aggregator part of the model.

The new estimate of the parameters from the data would then be sent to
an object (probably a file or standard out) in a point to point fashion,
because this application in our example here would need to confirm that it
had received the estimate.

Aside from the patterns mentioned above, all of this would be
accomplished using activeMQ and Camel so the patterns involved in the
message queue and communication built in to MQ would be there. Also, I
plan to use the template method for my objects that calculate in real-time.

Let me know if this makes sense and is of the correct scope and uses the
correct amount of patterns. The details might change a bit in
implementation, but this seems to cover most of the patterns from the last
portion of class and a few from the first part.

Concept on next page….

CONCEPT:

	

