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1 Deterministic Finite Automaton

Informally, a deterministic finite automaton (DFA) has finite number of s-
tates, and input symbols come from a finite alphabet Σ. Among all states,
there is one designated initial state and one or more final states. Given the
current state and the input symbol, there is exactly one transition (from old
state to new state). When it is stuck or does not reach a final state, the
input is rejected.

For example, following diagram is a DFA which accepts 01 strings with
even number of 0’s and even number of 1’s.

Figure 1: DFA accepting even number of 0s and 1s
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Definition 1.1. A deterministic finite automaton (DFA) is a 5-tuple M =
(Q,Σ, δ, q0, F ⊆ Q), where Q is the set of states, Σ is a (finite) set of alpha-
bets, δ : Q× Σ → Q is the transition function, q0 is the initial state, and F
is the set of final states.

In order to formally define the language accepted by a DFA, let us re-
cursively define the transition closure of δ, denoted by δ̂ : Q × Σ∗ → Q, as
follows. Let ϵ denote the empty string.

• δ̂(q, ϵ) = q.

• δ̂(q, wa) = δ(δ̂(q, w), a), where w ∈ Σ∗ and a ∈ Σ.

A string w ∈ Σ∗ is accepted iff δ̂(q0, w) ∈ F . The language accepted by M is

L(M) := {w : δ̂(q0, w) ∈ F}.

A language L ⊂ Σ∗ is called regular iff L = L(M) for some DFA M .

Exercise 1.2 (*). Prove the set of all prime numbers (encoded as a binary
number) is not regular.

2 Nondeterministic Finite Automaton

Informally, Nondeterministic finite automaton (NFA) is a DFA with nose,
that is, the transition, given current state and the next input symbol, is not
unique, and the NFA can choose the right way to go. For example, following
is a NFA that accepts Boolean strings ending with three consecutive 0’s or
two consecutive 1’s.

Figure 2: NFA accepting strings ending with 000 or 11
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Definition 2.1. A Nondeterministic finite automaton (NFA) is a 5-tuple
M = (Q,Σ, δ, q0, F ⊆ Q), where Q is the set of states, Σ is a (finite) set of
alphabets, δ : Q×Σ → P(Q) is the transition function, q0 is the initial state,
and F is the set of final states. Here, P(Q) denotes the power set of Q.

Remark 2.2. The difference between DFA and NFA is that, for DFA, the
transition function δ is a function from Q×Σ to Q; for NFA, the transition
function δ is a function from Q × Σ to P(Q) (the power set of Q). For
example, δ(q, a) = A ⊆ Q means that, at state q, if the input symbol is a, the
next state could be any state in A.

Similarly, define transitive closure function δ̂ : Q×Σ∗ → P(Q) as follows.

• δ̂(q, ϵ) = {q}.

• δ̂(q, wa) = {p ∈ Q : ∃r ∈ δ̂(q, w) such that p ∈ δ(r, q)}.

The language accepted by M is defined as

L(M) := {w ∈ Σ∗ : δ̂(q, w) contains a state in F}.

A DFA is clearly a NFA by definition. Here comes a question: can every
NFA be simulated by some DFA?

Theorem 2.3. Every NFA can be simulated by some DFA. In other words,
DFA and NFA are equivalent.

Proof. Let M = (Q,Σ, δ, q0, F ) be an NFA. Define DFA

M̃ = (Q̃,Σ, δ̃, q̃0, F̃ ),

where Q̃ = P(Q), q̃0 = {q0}, F̃ = {A ⊆ Q : A ∩ F ̸= ∅}, and

δ̃({p1, p2, . . . , pi}, a) := {p′ : ∃pi such that p′ ∈ δ(pi, a)}.

It is not difficult to verify that L(M̃) = L(M).

Note that in the proof, the number of states in the DFA is exponential in
the number of states of NFA. For example, if the number of states of NFA is
200, the corresponding DFA would have 2200 states, which is more than the
number of particles in the universe!

Exercise 2.4 (*). Prove that there exists NFA with n states which can not
be simulated by any DFA with ≤ n100 states.
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3 NFA with ϵ-moves

Recall that ϵ denotes the empty string – string of length 0. Again, NFA with
ϵ-moves is a 5-tuple M = (Q,Σ, δ, q0, F ), where

δ : Q× (Σ ∪ {ϵ}) → P(Q).

If δ(q, ϵ) = A ⊆ Q, then the next state of q could be any state in A on the
empty string (= without any input symbol).

For example, we have constructed a DFA, and hence also an NFA, which
accepts strings that have even number of 0’s and even number of 1’s, denoted
by M1; and we have constructed an NFA which accepts strings with either
3 consecutive 0’s or 2 consecutive 1’s, denoted by M2. The following NFA
with ϵ-moves accepts strings which either have even number of 0’s and even
number of 1’s, or contains 3 consecutive 0’s or 2 consecutive 1’s.

Figure 3: ϵ-NFA accepting L(M1) ∪ L(M2)

Define ϵ-closure of q as the set of states reachable from q by ϵ-moves,
denoted by ϵ-closure(q). Let

ϵ-closure(P ) =
∪
q∈P

ϵ-closure(q).

• δ̂(q, ϵ) = ϵ-closure of q.

• δ̂(q, wa) = ϵ-closure(P ), where

P = {p ∈ Q : ∃r ∈ δ̃(q, w) such that p ∈ δ(r, a)}.
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The language accepted by M is

L(M) := {w ∈ Σ∗ : δ̂(q, w) contains a state in F}.

The next result says NFA with ϵ-moves is not stronger than the usual
NFA.

Theorem 3.1. Any NFA with ϵ-moves can be simulated by some NFA (with-
out ϵ-moves).

Proof. Let M = (Q,Σ, δ, q0, F ) be an NFA with ϵ-moves. Define an NFA
without ϵ-moves M ′ = (Q,Σ, δ′, q0, F

′), where

F ′ =

{
F ∪ {q0}, if ϵ-closure(q0) contains a state in F,

F, otherwise
(1)

and δ′(q, a) = δ̂(q, a). We leave it as an exercise to verify L(M) = L(M ′).

Putting everything together, we have shown DFA is equivalent to NFA,
equivalent to NFA with ϵ-moves (in the sense of computational power, re-
gardless of the number of states).
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