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1 Ogden’s Lemma

Lemma 1.1. Let L be a CFL. There exists a constant n depending only on
L such that if z ∈ L, |z| ≥ n, and if we mark any n or more positions in z
as distinguished, then we can write z = uvwxy such that

• v and x together contain at least one distinguished position.

• vwx has at most n distinguished position.

• For all i ≥ 0, uviwxiy ∈ L.

Remark 1.2. It implies the usual pumping lemma by marking all positions
of z.

Proof. Let G be a Chomsky normal form for L \ {ϵ} with k variables. Let
n = 2k+1. Consider any G-derivation tree of z.

Call any node of s a branch point if both of its sons have distinguished
descendants.

Claim 1.3. There exists a path with at least k+1 branch points on the path.

Proof. Start at the top. If only one son of a node has distinguished descen-
dants, then go in the direction of that son. If both sons of a node have
distinguished descendants, then go in the direction of the son with more dis-
tinguished descendants. (If both sons have equal number of distinguished
descendants, then go in either direction.) Therefore this path has at least
log n = k + 1 branch points.
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Figure 1: A path with ≥ k + 1 branch points

The rest of the proof is same as the usual pumping lemma. Look at the
k+1 branch points on the path from the bottom. Among them, at least two
have the same variable label, say A.

Then,

(1) vwx has at most 2k+1 = n distinguished descendants.

(2) Let A → BC. Since A is a branch point, both B and C have distin-
guished descendants. It follows that either v and x has at least one
distinguished descendants.

(3) Since A ⇒∗
G vAx and A ⇒∗

G w, we have A ⇒∗
G viwxi, and thus

uviwxiy ∈ L for all i ≥ 0.

2 Closure Properties

Proposition 2.1. Let L1, L2 be CFLs. Then L1 ∪ L2 is also a CFL.

Proof. Assume we have CFGs for L1 and L2 with start symbols S1 and S2

respectively. Adding production rule S → S1 | S2, we will get a CFG for
L1 ∪ L2.
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Figure 2: Proof of Ogden’s lemma

Proposition 2.2. Let L1, L2 be CFLs. Then L1L2 = {uv : u ∈ L1, v ∈ L2}
is also a CFL.

Proof. Assume we have CFGs for L1 and L2 with start symbols S1 and S2

respectively. Add rule S → S1S2, and we will get a CFG for L1L2.

Proposition 2.3. If L is a CFL, then L∗ = ∪iL
i is also a CFL, where

L0 = {ϵ} and Li = LLi−1.

Proof. Add rule S → ϵ | SS, where S is the start symbol.

If both L1, L2 are CFLs, L1 ∩ L2 may not be a CFL. For example,

L1 = {aibjck : i = j, and i, j, k ≥ 0},

L2 = {aibjck : j = k, and i, j, k ≥ 0},
are CFLs, but

L1 ∩ L2 = {aibici : i ≥ 0}
is not.
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Recall that a substitution f : Σ → P(∆∗), that is, for each a, f(a) ⊆ ∆∗

is a language.

Theorem 2.4. If L is a CFL (over alphabet Σ), and f : Σ → P(∆∗) is a
substitution such that f(a) is a CFL for each a ∈ L, then f(L) is also a CFL,
where

f(L) = {w1w2 · · ·wm : wi ∈ f(ai) and a1a2 · · · am ∈ L}.

Proof. Replace a ∈ Σ in the production of the grammar for L by a new
symbol Sa, and add production rule Sa → { production rule for La}.

Corollary 2.5. CFLs are closed under homomorphism f : Σ → ∆∗.

Proposition 2.6. CLFs are closed uner inverse homomorphisms. That is,
if L ⊆ ∆∗ is a CFL and f : Σ → ∆∗, then f−1(L) = {w ∈ Σ∗ : f(w) ∈ L} is
also a CFL.

Proof. Let M be a PDA for L such that L = N(M). Our goal is to construct
a PDA M ′ for L′ = f−1(L) such that L′ = N(M ′). The idea is to that, for
input x, transform it to f(x), and make it as an input for M . The details
are left to the readers.
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