
Lecture 14: Recursive Languages

Instructor: Ketan Mulmuley
Scriber: Yuan Li

February 24, 2015

1 Recursive Languages

Definition 1.1. A language L ⊆ Σ∗ is called recursively enumerable (r.
e.) or computably enumerable if there exists a Turing machine M such that
L = L(M).

Recall that L(M) = {w ∈ Σ∗ : q0w 7→∗
M α1pα2, where p ∈ F , α1, α2 ∈

Γ∗}, and M can loop on some input, in which that input is not in L(M).

Definition 1.2. A language L is called recursive if there exists a Turing
machine M such that L = L(M) and M halts on all inputs.

Turing machine can also be used to compute functions. Suppose on input

00 · · · 0︸ ︷︷ ︸
k1

1 00 · · · 0︸ ︷︷ ︸
k2

1 · · · 1 00 · · · 0︸ ︷︷ ︸
kl

B,

Turing machine M finally halts and output

00 · · · 0︸ ︷︷ ︸
f(k1,k2,...,kl)

B,

where f : Nl → N. Then we say Turing machine M computes f .
Formally, given a TM M , define f(k1, k2, . . . , kl) = ⊥ (undefined) if M

does not halt or does not halt with output in correct form; f(k1, k2, . . . , kl) =
m if M stops with 0m on the tape.

1



Definition 1.3. We say that f : Nl → N is totally recursive if f = fM
for some TM M that always halts with output in the correct form, and thus
f(k1, k2, . . . , kl) is defined everywhere.

We say that f : Nl → N ∪ {⊥} is partially recursive if f = fM for some
TM M that may not always halt (with output in correct format), and thus
f(k1, k2, . . . , kl) is not defined everywhere.

Proposition 1.4. If f : Nl → N is totally recursive, then language L =
{((k1, k2, . . . , kl),m) : f(k1, . . . , kl) = m} is recursive.

Proof. In order to prove L is recursive, we need to prove there exists a Turing
machine M such that L(M) = L and M halts on all inputs.

Since f : Nl → N is totally recursive, by definition, there exists a TM N
which, on input (k1, k2, . . . , kl), (always halts and) outputs f(k1, . . . , kl). Our
Turing machine M works as follows, on input (k1, k2, . . . , kl,m), simulate N
on (k1, k2, . . . , kl), untilN halts with outputm′. Accept if and only ifm = m′.
It clear that M accepts language L, and M halts on all input, since N halts
on all (k1, k2, . . . , kl).

Proposition 1.5. If f : Nl → N is partially recursive, then L = {((k1, k2, . . . , kl),m) :
f(k1, . . . , kl) = m} is recursively enumerable.

The proof is similar to the Proposition 1.4, which is omitted.

Proposition 1.6. Conversely, if L = {((k1, k2, . . . , kl),m)} is recursively
enumerable, and it is a graph function, i.e., for all k1, k2, . . . , kl, there exists
at most one m such that ((k1, k2, . . . , kl),m) ∈ L. Then the function f :
Nl → N ∪ {⊥}, defined by f(k1, k2, . . . , kl) = m if there exists m such that
((k1, k2, . . . , kl),m) ∈ L, is partially recursive.

Proof. In order to prove f is partially recursive, we need to construct Tur-
ing machine M , which outputs f(k1, k2, . . . , kl) on input (k1, k2, . . . , kl), if
f(k1, k2, . . . , kl) is defined. Since L is r. e., there exists a Turing machine
N such that L(N) = L. Our machine M does the following: enumerate
(i, j) ∈ N× N, and when (i, j) is enumerated, simulate N on ((k1, . . . , kl), i)
for j steps, if M halts, output i.

The following is similar to prove:

Proposition 1.7. If L = {((k1, k2, . . . , kl),m)} is recursive, and for all
k1, k2, . . . , kl ∈ N, there exists exactly one m ∈ N such that ((k1, k2, . . . , kl),m) ∈
L. Then the function f : Nl → N, defined by f(k1, k2, . . . , kl) = m for the
unique m such that ((k1, k2, . . . , kl),m) ∈ L, is totally recursive.

2



2 Enhancing Turing Machine

Turing machine is the simplest programming language which is as powerful
as C, C++, Java, etc. However, it is not easy to program on Turing machine.
Imagine writing a TM for weather forecasting will be very difficult.

Now we will enhance the convenience (not the power) of Turing machine.

Let us add a cache (finite storage in finite content) in the head, which
can be implemented using usual one-tape Turing machine with new state
Q′ = Q× Γn, where n is the length of the cache.

Figure 1: TM with a cache

Suppose we want to have multiple tracks (and only one head) for a Tur-
ing machine. It is equivalent to a one-tape Turing machine with new tape
alphabet Γk, where k is the number of tracks.

Figure 2: TM with multiple tracks

In the usual Turing machine, there is one tape infinite in one direction.

3



Suppose we want to have two-way infinite tape. It can be implemented using
a two-track Turing machine, where the head read one tape at a time.

Figure 3: Two-way infinite tape TM

Suppose we want to implement a multitape TM as the following figure
suggests. At each step, depending on states q1, q2, q3, and input symbols

Figure 4: Multitape TM

a, b, c on each tape, the machine changes a to a′, b to b′, c to c′, moves q1 left
or right, q2 left or right, q3 left or right, and changes state q1 to q′1, q2 to q′2,
q3 to q′3.

This multitape Turing machine can be implemented using multitrack TM
(2 tracks per tape), where the first track for each tape keeps track of the
location of the head (marked by X, all others are blank). The new head
has state Qk, where k is the number of tapes, and a cache of size k, which

4



stores the symbols each head points to. For each step of the old machine,
the new multitrack TM first reads all symbols in each tape and put them in
the cache, depending on current state (q1, q2, q3), the new machine changes
to a new state (q′1, q

′
2, q

′
3), and then goes to each position under symbol X,

changes the symbol, and moves X either left or right.

Figure 5: Simulate multitape TM by multitrack TM with cache

It is easy to see the cost of simulating each move is proportional to the
distance between the leftmost and rightmost heads, and thus the blowup in
time is quadratic.

5


