
Abstract Factory
Nengbao Liu

Terence Zhao

Intent

“Provides an interface for creating families of related or
dependent objects without specifying their concrete
classes.”

- Gamma et. al (Design Patterns)

Motivation

Imagine we built a Sandwich Robot to work at a local hamburger restaurant.

Our SandwichBot 1.0 has been programmed to combine a sesame bun, a grilled
beef patty, a slice of cheddar cheese, a piece of lettuce, and a squirt of ketchup to
make a sandwich.

Let’s say that one day, SandwichBot is reassigned to a nearby hotdog stand. For
SandwichBot to now make hotdogs, we would need to reprogram it to recognize a
new set of ingredients. Since updating SandwichBot is costly, it should ideally be
able to make sandwiches regardless of the particular ingredients available.

In a similar fashion, if our application deals with “creating families of related or
dependent objects” (sandwich ingredients), we should not hard-code their creation
to specific concrete classes (i.e. hamburger ingredients).

SandwichBot 2.0

AbstractFactory (SandwichFactory)
Declares an interface for ingredient operations that create abstract ingredient objects

ConcreteFactory (HamburgerFactory, ReubenFactory, HotdogFactory, etc.)
Implements the ingredient operations to create concrete ingredient objects

AbstractIngredient (Bread, Meat, Cheese, Vegetables, and Condiments)
Declares an interface for a type of ingredient object

ConcreteIngredient (Rye, Corned Beef, Swiss Cheese, Sauerkraut, Thousand Island dressing)
Implements the AbstractIngredient interface and defines an ingredient object to be created by
the corresponding concrete sandwich factory.

Client (SandwichBot)
Uses only interfaces declared by the AbstractFactory and AbstractIngredient classes and
remains unaware of the concrete classes it’s using.
Thus, SandwichBot2.0 will be able to create any number of different sandwiches since it stays
independent of the specific ingredients needed and only commits to an ingredient interface.

UML: Sandwich Example

BREAD

MEAT

VEGETABLES

CHEESE

BREAD

CONDIMENTS

SandwichFactory

HamburgerFactory

ReubenFactory

HotdogFactory

Sesame Bun

Ground Beef Patty

Lettuce

Cheddar

Sesame Bun

Ketchup

Rye Bread

Corned Beef

Sauerkraut

Swiss

Rye Bread

Thousand Island

Hotdog Bun

Sausage

Relish

Cheese Sauce

Hotdog Bun

Mustard

Client

AbstractIngredients

ConcreteIngredients

UML Diagram
The Abstract Factory pattern is useful when:

1. An application should be independent
of how its objects are created,
composed, and represented.

2. An application should be configured
with one of multiple families of related
or dependent objects.

3. You want to constrain an application
to use a family of related objects that
were designed to be used together.

4. You want to provide a class library of
objects in which you reveal just their
interfaces, not their implementations.

Benefits

Isolates concrete classes:
Since clients manipulate instances through their abstract interfaces, product
class names are isolated in the implementation of the concrete factory.

Makes exchanging product families easy:
By simply changing the concrete factory an application uses, we can change
the entire family of products all at once.

Promotes consistency among products:
Makes it easy for an application to enforce using only product objects from the
same family.

Consequences

Supporting new kinds of products is difficult:
Since the AbstractFactory interface fixes the set of products that can be
created, supporting new kinds of products requires extending the factory
interface.This involves changing the AbstractFactory class and all of its
subclasses.

Defining extensible factories requires a tradeoff:
A more flexible but less safe design is to add a parameter to the operations
that create objects allowing the type of object created to be specified.
Unfortunately, the client will not be able to differentiate the classes of the
products returned or use sub-class specific operations unless it tries to
downcast, which is not always feasible or safe.

Factories as singletons:
Typically only one instance of a ConcreteFactory per product family is needed
Creating products via Factory Method:
We can define a factory method for each product to be overridden in a concrete
factory when specifying its products, however, doing so requires a new concrete
factory subclass for each product family, even if the product families are only
slightly different.
Creating products via Prototype:
If many product families are possible, the concrete factory can be implemented
using the Prototype pattern. The concrete factory is initialized with the
prototypical instance of each product in the family and creates a new product by
cloning its prototype, eliminating the need for a new concrete factory class for
each new product family.

Implementation Techniques

Code Example

