
Prototype

Specify the kinds of objects to create using a prototypical 
instance, and create new objects by copying this prototype.



Motivation
● You have a class you want to instantiate 

with the same state many times.
● Prototypes allow you to have a template 

object from which you can instantiate 
copies of at run time.

● Example: Asteroids!
○ Instantiate instances of asteroids.
○ Instantiate pellets fired by the ship.

● Better example: game framework
○ Tools that instantiate GameObject classes 

don’t know how to construct the concrete 
classes specific to that game.

○ Create a generic factory that creates 
instances of an abstract GameObject class.

○ Users of the framework specify the concrete 
prototype to instantiate.



Prototype UML



Participants
● Prototype (GameObject)

○ declares an interface for cloning itself.

● Concrete Prototype (Asteroid, Pellet, UpgradedPellet)
○ implements an operation for cloning itself.

● Client (Ship, GameObjectFactory)
○ creates a new object by asking the prototype to clone itself.



Benefits
● By reusing the machinery to instantiate 

class instances we avoid building a 
complicated class hierarchy with a 
dedicated factory for each class we want to 
instantiate.

● If our class in question has only a small 
number of valid initial states, we can create 
a prototype for each and instantiate the 
appropriate one chosen at run-time.

○ Choose one of a few kinds of asteroids. If 

they differ only in their shape, we can 
certainly reuse the same class.

● By changing the object used as the 
prototype, you can not only change the 
parameters of the objects instantiated, you 
can also change the class of them as well.

○ Swap out the prototype for the asteroids 

with bigger asteroids as the game 
progresses so as to increase difficulty.

○ Swap out the prototype for the pellets fired 

by the ship when the player gets a 
temporary upgrade.



Consequences & Complications
● Hides the concrete product classes, 

reducing the number of names the client is 
required to know.

● If the prototypes make use of composition, 
we can get extremely variable objects 
created while still not changing the concrete 
class of the prototype.

● The Prototype pattern is critical for any 
factory that wants to instantiate classes 
loaded dynamically at run-time.

● Implementing a clone method might be 
difficult, especially if member variables 
cannot be copied or if circular or multi-
references are involved.

● Clients may want to customize some of the 
state of the instantiated objects.

○ If the specified parameters are universal to 

all the classes of the prototype’s hierarchy 

(i.e. location coordinates for a 

GameObject), they can be added as 
parameters to the clone method.

○ If the parameters vary too much from class 

to class (or even from client to client), the 

Prototype pattern might not be the best 
choice.


