
Concurrency and Parallelism
in

Functional Programming Languages

John Reppy
jhr@cs.uchicago.edu

University of Chicago

April 21 & 24, 2017

jhr@cs.uchicago.edu

Introduction

Outline

I Programming models
I Concurrent
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Programming models
I Concurrent
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Programming models
I Concurrent
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Programming models
I Concurrent
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Introduction

Outline

I Programming models
I Concurrent
I Concurrent ML
I Multithreading via continuations (if there is time)

CML 2

Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

CML 3

Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

CML 3

Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

CML 3

Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

CML 3

Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.

CML 3

Programming models

Parallel vs. concurrent vs. distributed
Parallel, concurrent, and distributed programming address different
problems.

I Parallelism is about speed — exploiting parallel processors to solve
problems quicker.

I Concurrency is about nondeterminism — managing the unpredictable
external world.

I Distributed systems is about computing in a network — it involves
aspects of both parallelism and concurrency, but also raises issues of
fault-tolerance and trust.

CML 4

Programming models

Parallel vs. concurrent vs. distributed
Parallel, concurrent, and distributed programming address different
problems.

I Parallelism is about speed — exploiting parallel processors to solve
problems quicker.

I Concurrency is about nondeterminism — managing the unpredictable
external world.

I Distributed systems is about computing in a network — it involves
aspects of both parallelism and concurrency, but also raises issues of
fault-tolerance and trust.

CML 4

Programming models

Parallel vs. concurrent vs. distributed
Parallel, concurrent, and distributed programming address different
problems.

I Parallelism is about speed — exploiting parallel processors to solve
problems quicker.

I Concurrency is about nondeterminism — managing the unpredictable
external world.

I Distributed systems is about computing in a network — it involves
aspects of both parallelism and concurrency, but also raises issues of
fault-tolerance and trust.

CML 4

Programming models

Parallel vs. concurrent vs. distributed
Parallel, concurrent, and distributed programming address different
problems.

I Parallelism is about speed — exploiting parallel processors to solve
problems quicker.

I Concurrency is about nondeterminism — managing the unpredictable
external world.

I Distributed systems is about computing in a network — it involves
aspects of both parallelism and concurrency, but also raises issues of
fault-tolerance and trust.

CML 4

Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel

CML 5

Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel

CML 5

Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel

CML 5

Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel

CML 5

Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel

CML 5

Programming models

Deterministic vs. non-deterministic
Multiple threads/processors introduces the non-deterministic program
execution; i.e., two runs of a program may produce different results.

Parallel languages that are implicitly parallel or implicitly threaded usually
hide this non-determinism and guarantee sequential semantics.

Explicitly threaded languages are naturally concurrent, although there are a
few examples of deterministic concurrent languages.

CML 6

Programming models

Deterministic vs. non-deterministic
Multiple threads/processors introduces the non-deterministic program
execution; i.e., two runs of a program may produce different results.

Parallel languages that are implicitly parallel or implicitly threaded usually
hide this non-determinism and guarantee sequential semantics.

Explicitly threaded languages are naturally concurrent, although there are a
few examples of deterministic concurrent languages.

CML 6

Programming models

Deterministic vs. non-deterministic
Multiple threads/processors introduces the non-deterministic program
execution; i.e., two runs of a program may produce different results.

Parallel languages that are implicitly parallel or implicitly threaded usually
hide this non-determinism and guarantee sequential semantics.

Explicitly threaded languages are naturally concurrent, although there are a
few examples of deterministic concurrent languages.

CML 6

Programming models

Shared state vs. shared-nothing
The last design axis is sharing of state:

I Shared-memory uses the mechanisms of imperative programming to
implement communication between threads.

I Shared-nothing requires that threads communicate via some form of
messaging.

Note that shared-nothing languages can still be implemented in a shared
address space!

CML 7

Programming models

Shared state vs. shared-nothing
The last design axis is sharing of state:

I Shared-memory uses the mechanisms of imperative programming to
implement communication between threads.

I Shared-nothing requires that threads communicate via some form of
messaging.

Note that shared-nothing languages can still be implemented in a shared
address space!

CML 7

Programming models

Shared state vs. shared-nothing
The last design axis is sharing of state:

I Shared-memory uses the mechanisms of imperative programming to
implement communication between threads.

I Shared-nothing requires that threads communicate via some form of
messaging.

Note that shared-nothing languages can still be implemented in a shared
address space!

CML 7

Programming models

Shared state vs. shared-nothing
The last design axis is sharing of state:

I Shared-memory uses the mechanisms of imperative programming to
implement communication between threads.

I Shared-nothing requires that threads communicate via some form of
messaging.

Note that shared-nothing languages can still be implemented in a shared
address space!

CML 7

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with
non-determinism (e.g., users and the network).

I Concurrency provides a clean abstraction of such interactions by
hiding the underlying interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 8

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with
non-determinism (e.g., users and the network).

I Concurrency provides a clean abstraction of such interactions by
hiding the underlying interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 8

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with
non-determinism (e.g., users and the network).

I Concurrency provides a clean abstraction of such interactions by
hiding the underlying interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 8

Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with
non-determinism (e.g., users and the network).

I Concurrency provides a clean abstraction of such interactions by
hiding the underlying interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.

CML 8

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?

CML 9

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x

CML 10

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.

CML 11

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..

CML 12

Concurrency Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice,

join-patterns.

CML 13

Concurrency Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice,

join-patterns.

CML 13

Concurrency Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice,

join-patterns.

CML 13

Concurrency Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice,

join-patterns.

CML 13

Concurrency Message-passing

Channels
For the rest of the lecture, we assume channel-based communication with
synchronous message passing.
In SML, we can define the following interface to this model:
type ’a chan

val channel : unit -> ’a chan

val recv : ’a chan -> ’a
val send : (’a chan

*

’a) -> unit

We also need to define a way to create threads:
val spawn : (unit -> unit) -> unit

CML 14

Concurrency Message-passing

Example: concurrent streams
We can connect threads together with channels to implement concurrent
streams.

Here is a function that creates the stream of integers 2, 3, 4, ...
fun countFrom2 () = let

val outCh = channel()
fun lp n = (send(outCh, n); lp(n+1))
in

spawn (fn () => lp 2); outCh
end

And here is a function that filters out multiples of a number from a stream
fun filter (inCh, p) = let

val outCh = channel()
fun lp () = let

val n = recv inCh
in

if (n mod p = 0) then lp() else (send(outCh, n); lp())
end

in

spawn lp; outCh
end

CML 15

Concurrency Message-passing

Example: concurrent streams (continued ...)

Using these two functions
val countFrom2 : unit -> int chan

val filter : int chan

*

int -> int chan

we can implement the Sieve of Eratosthenes for finding prime numbers:
fun sieve () = let

val outCh = channel()
fun head ch = let

val p = recv ch
in

send (outCh, p);
head (filter (ch, p))

end

in

spawn (fn () => head (countFrom2 ()));
outCh

end

CML 16

Concurrency Message-passing

Example: client-server concurrency
The other common pattern in concurrent programming is client-server
interactions.
A very simple example is a memory cell with the following API:
type ’a cell

val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val set : ’a cell

*

’a -> unit

We define a datatype to represent the two kinds of client requests:
datatype ’a req = GET | SET of ’a

And we represent a cell by a pair of channels
datatype ’a cell = CELL of {

reqCh : ’a req chan,
replyCh : ’a chan

}

CML 17

Concurrency Message-passing

Example: client-server concurrency (continued ...)

The cell function creates a new server and returns the pair of channels used
to communicate with it:
fun cell init = let

val reqCh = channel() and replyCh = channel()
fun lp state = (case (recv reqCh)

of GET => (send(replyCh, state); lp state)
| SET v => lp v)

in

spawn (fn () => lp init);
CELL{reqCh = reqCh, replyCh = replyCh}

end

We can then define the matching client-side operations
fun get (CELL{reqCh, replyCh}) = (send(reqCh, GET); recv replyCh)

fun set (CELL{reqCh, ...}, v) = send(reqCh, SET v)

Notice that the client and server message operations match; if they did not
match, then there would be deadlock.

CML 18

Concurrency Message-passing

Choice
To support monitoring communications on multiple channels, we need a
choice operator that allows a thread to block on multiple channels.
For example, we might define the following function:
val selectRecv : (’a chan

*

(’a -> ’b)) list -> ’b

that takes a list of channels paired with actions and waits until a message is
available on one of the channels.

CML 19

Concurrent ML

Interprocess communication
In practice, it is often the case that

I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic

choice).
These two properties of IPC cause a conflict.

CML 20

Concurrent ML

Interprocess communication
In practice, it is often the case that

I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic

choice).
These two properties of IPC cause a conflict.

CML 20

Concurrent ML

Interprocess communication
In practice, it is often the case that

I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic

choice).
These two properties of IPC cause a conflict.

CML 20

Concurrent ML

Interprocess communication
In practice, it is often the case that

I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic

choice).
These two properties of IPC cause a conflict.

CML 20

Concurrent ML

Interprocess communication (continued ...)

For example, consider a possible interaction between a client and two
servers.

request

reply / ack

nack

request

Server1 Server2Client

CML 21

Concurrent ML

Interprocess communication (continued ...)

Without abstraction, the code is a mess.
let val replCh1 = channel() and nack1 = cvar()

val replCh2 = channel() and nack2 = cvar()

in

send (reqCh1, (req1, replCh1, nack1));

send (reqCh2, (req2, replCh2, nack2));

selectRecv [

(replCh1, fn repl1 => (set nack2; act1 repl1),

(replCh2, fn repl2 => (set nack1; act2 repl2)

]
end

But traditional abstraction mechanisms do not support choice!

CML 22

Concurrent ML

Concurrent ML
The conflict between choice and abstraction was the prime motivation
behind the design of Concurrent ML.

I CML provides a uniform framework for synchronization: events.
I CML provides event combinators for constructing abstract protocols.
I Event provide a uniform framework for many different kinds of event

constructors:
I I-variables
I M-variables
I Mailboxes
I Channels
I Timeouts
I Thread termination
I Synchronous I/O

CML 23

Concurrent ML

Concurrent ML
The conflict between choice and abstraction was the prime motivation
behind the design of Concurrent ML.

I CML provides a uniform framework for synchronization: events.
I CML provides event combinators for constructing abstract protocols.
I Event provide a uniform framework for many different kinds of event

constructors:
I I-variables
I M-variables
I Mailboxes
I Channels
I Timeouts
I Thread termination
I Synchronous I/O

CML 23

Concurrent ML

Concurrent ML
The conflict between choice and abstraction was the prime motivation
behind the design of Concurrent ML.

I CML provides a uniform framework for synchronization: events.
I CML provides event combinators for constructing abstract protocols.
I Event provide a uniform framework for many different kinds of event

constructors:
I I-variables
I M-variables
I Mailboxes
I Channels
I Timeouts
I Thread termination
I Synchronous I/O

CML 23

Concurrent ML

Concurrent ML
The conflict between choice and abstraction was the prime motivation
behind the design of Concurrent ML.

I CML provides a uniform framework for synchronization: events.
I CML provides event combinators for constructing abstract protocols.
I Event provide a uniform framework for many different kinds of event

constructors:
I I-variables
I M-variables
I Mailboxes
I Channels
I Timeouts
I Thread termination
I Synchronous I/O

CML 23

Concurrent ML

Events

I We use event values to package up protocols as first-class abstractions.
I An event is an abstraction of a synchronous operation, such as

receiving a message or a timeout.
type ’a event

I Base-event constructors create event values for communication
primitives:
val recvEvt : ’a chan -> ’a event

val sendEvt : ’a chan

*

’a -> unit event

CML 24

Concurrent ML

Events (continued ...)

Event operations:
I Event wrappers for post-synchronization actions:

val wrap : (’a event

*

(’a -> ’b)) -> ’b event

I Event generators for pre-synchronization actions and cancellation:
val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

I Choice for managing multiple communications:
val choose : ’a event list -> ’a event

I Synchronization on an event value:
val sync : ’a event -> ’a

CML 25

Concurrent ML

Example: Swap channels
A swap channel is an abstraction that allows two threads to swap values.
type ’a swap_chan

val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan

*

’a -> ’a event

CML 26

Concurrent ML

Example: Swap channels (continued ...)

The basic implementation of swap channels is straightforward.
datatype ’a swap_chan = SC of (’a

*

’a chan) chan

fun swapChannel () = SC(channel ())

fun swap (SC ch, vOut) = let

val inCh = channel ()
in

select [
wrap (recvEvt ch,
fn (vIn, outCh) => (send(outCh, vOut); vIn)),

wrap (sendEvt (ch, (vOut, inCh)),
fn () => recv inCh)

]
end

The select function is shorthand for sync o choose.
Note that the swap function both offers to send and receive on the channel so
as to avoid deadlock.

CML 27

Concurrent ML

Making swap channels first class
We can also make the swap operation first class
val swapEvt : ’a swap_chan

*

’a -> ’a event

by using the guard combinator to allocate the reply channel.
fun swapEvt (SC ch, vOut) = guard (fn () => let

val inCh = channel ()
in

choose [
wrap (recvEvt ch,

fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)),

fn () => recv inCh)
]

end)

CML 28

Concurrent ML

Two-server interaction using events
Server abstraction:
type server
val rpcEvt : server

*

req -> repl event

The client code is no longer a mess.
select [

wrap (rpcEvt server1, fn repl1 => act1 repl1),

wrap (rpcEvt server2, fn repl2 => act2 repl2)

]

CML 29

Concurrent ML

Two-server interaction using events (continued ...)

The implementation of the server protocol is as before, but we can now
package it up as an event-valued abstraction:
datatype server = SERVER of (req

*

repl chan

*

unit event) chan

fun rpcEvt (SERVER recCh, req) = withNack (fn nack => let

val replCh = channel ()
in

send (reqCh, (req, replCh, nack));
revcEvt replCh

end)

CML 30

Concurrent ML

Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 31

Concurrent ML

Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 31

Concurrent ML

Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 31

Concurrent ML

Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 31

Concurrent ML

Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns

CML 31

Concurrent ML

Example — distributed tuple spaces
The Linda family of languages use tuple spaces to organize distributed
computation.
A tuple space is a shared associative memory, with three operations:

output adds a tuple.
input removes a tuple from the tuple space. The tuple is selected by

matching against a template.
read reads a tuple from the tuple space, without removing it.

val output : (ts
*

tuple) -> unit
val input : (ts

*

template) -> value list event

val read : (ts
*

template) -> value list event

CML 32

Concurrent ML

Distributed tuple spaces (continued ...)

There are two ways to implement a distributed tuple space:
I

Read-all, write-one

I
Read-one, write-all

We choose read-all, write-one. In this organization, a write operation goes
to a single processor, while an input or read operation must query all
processors.

CML 33

Concurrent ML

Distributed tuple spaces (continued ...)

The input protocol is complicated:
1. The reader broadcasts the query to all tuple-space servers.
2. Each server checks for a match; if it finds one, it places a hold on the

tuple and sends it to the reader. Otherwise it remembers the request to
check against subsequent write operations.

3. The reader waits for a matching tuple. When it receives a match, it
sends an acknowledgement to the source, and cancellation messages to
the others.

4. When a tuple server receives an acknowledgement, it removes the
tuple; when it receives a cancellation it removes any hold or queued
request.

CML 34

Concurrent ML

Distributed tuple spaces (continued ...)

Here is the message traffic for a successful input operation:

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

request

accept

Remote
Tuple Server

reply

CML 35

Concurrent ML

Distributed tuple spaces (continued ...)

We use negative acknowledgements to cancel requests when the client
chooses some other event.

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

ev
request

cancel

Remote
Tuple Server

Note that we must confirm that a client accepts a tuple before sending out
the acknowledgement.

CML 36

Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient
implementations of concurrency features.

I This is especially true for languages that support first-class
continuations.

CML 37

Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient
implementations of concurrency features.

I This is especially true for languages that support first-class
continuations.

CML 37

Multithreading via continuations

Continuations
Continuations are a semantic concept that captures the meaning of the “rest
of the program.”

In a functional language, we can apply the continuation-passing-style

transformation to make continuations explicit.

For example, consider the expression “(x+y)
*

z.” We can rewrite it as
follows:
(fn k => k(x+y)) (fn v => v

*

z)

In this rewritten code, the variable k is bound to the continiation of the
expression “x+y.”

CML 38

Multithreading via continuations

First-class continuations
Some languages make it possible to reify the implicit continuations. For
example, SML/NJ provides the following interface to its first-class
continuations:
type ’a cont

val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

First-class continuations can be used to implement many kinds of
control-flow, including loops, back-tracking, exceptions, and various
concurrency mechanisms.

CML 39

Multithreading via continuations

Coroutines
Implementing a simple coroutine package using continuations is
straightforward.
val fork : (unit -> unit) -> unit
val exit : unit -> ’a
val yield : unit -> unit

CML 40

Multithreading via continuations

Coroutines (continued ...)

val rdyQ : unit cont Q.queue = Q.mkQueue()

fun dispatch () = throw (Q.dequeue rdyQ) ()

fun yield () = callcc (fn k => (
Q.enqueue (rdyQ, k);
dispatch ()))

fun exit () = dispatch ()

fun fork f = callcc (fn parentK => (
Q.enqueue (rdyQ, parentK);
(f ()) handle _ => ();
exit ()))

CML 41

Multithreading via continuations

Adding synchronization
To allow our threads to communicate, we will add support for ivars, which
are write-once synchronous variables.
type ’a ivar

fun ivar : unit -> ’a ivar
val get : ’a ivar -> ’a
val put : ’a ivar

*

’a -> unit

An ivar can either be empty (possibly with waiting threads) or full with a
value, as reflected in the following representation:
datatype ’a ivar_state
= EMPTY of ’a cont list
| FULL of ’a

datatype ’a ivar = IV of ’a ivar_state ref

Ivars are created in the empty state:
fun ivar = ref(EMPTY[])

CML 42

Multithreading via continuations

Adding syncronization (continued ...)

To get a value from an ivar, we check its state and block if it is empty.
fun get (IV r) = (case !r

of EMPTY waiting => callcc (fn resumeK => (
r := EMPTY(resumeK :: waiting);
dispatch()))

| FULL v => v)

fun put (IV r, v) = (case !r
of EMPTY waiting => (

r := FULL v;
List.app (bindAndEnqueue v) waiting)

| FULL v => raise Fail "already set")

The tricky part is the bindAndEnqueue function, which turns an ’a cont into a
unit cont and then enqueues it on the scheduling queue.
fun bindAndEnqueue (v : ’a) (k : ’a cont) : unit =

Q.enqueue (rdyQ,
callcc (fn k’ => (
callcc (fn unitK => throw k’ unitK);
throw k v)))

CML 43

Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44

Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44

Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44

	Introduction
	Programming models
	Concurrency
	Message-passing

	Concurrent ML
	Concurrent ML
	Multithreading via continuations

