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Programming models

Different language-design axes

I Parallel vs. concurrent vs. distributed.
I Implicitly parallel vs. implicitly threaded vs. explicitly threaded.
I Deterministic vs. non-deterministic.
I Shared state vs. shared-nothing.
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Programming models

Parallel vs. concurrent vs. distributed
Parallel, concurrent, and distributed programming address different
problems.

I Parallelism is about speed — exploiting parallel processors to solve
problems quicker.

I Concurrency is about nondeterminism — managing the unpredictable
external world.

I Distributed systems is about computing in a network — it involves
aspects of both parallelism and concurrency, but also raises issues of
fault-tolerance and trust.
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Programming models

Implicitly parallel vs. implicitly threaded vs. explicitly
threaded
In the space of parallel programming models, there are choices to be made
about how programmers introduce parallelism.

I Implicitly parallel programming relies entirely on the compiler and
runtime to determine when two computations should be run in parallel.

I Implicitly threaded parallelism relies on the programmer adding
annotations that mark places where parallelism would be useful, but
the language does not make explicit any notion of parallel threads.

I Explicit threading (aka concurrency) uses language-level threading
mechanisms to specify parallelism.

Another, related, design axis is data-parallel vs. task-parallel
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Programming models

Deterministic vs. non-deterministic
Multiple threads/processors introduces the non-deterministic program
execution; i.e., two runs of a program may produce different results.

Parallel languages that are implicitly parallel or implicitly threaded usually
hide this non-determinism and guarantee sequential semantics.

Explicitly threaded languages are naturally concurrent, although there are a
few examples of deterministic concurrent languages.
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Programming models

Shared state vs. shared-nothing
The last design axis is sharing of state:

I Shared-memory uses the mechanisms of imperative programming to
implement communication between threads.

I Shared-nothing requires that threads communicate via some form of
messaging.

Note that shared-nothing languages can still be implemented in a shared
address space!
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Concurrency

Why concurrency?

I Many applications are reactive systems that must cope with
non-determinism (e.g., users and the network).

I Concurrency provides a clean abstraction of such interactions by
hiding the underlying interleaving of execution.

I Thread abstraction is useful for large-grain, heterogeneous parallelism.
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Concurrency

Synchronization and communication
There are two aspects to thread interaction:

I
Communication — how does data get from one thread to another?

I
Synchronization — how are the possible orderings of threads
restricted?

I
Mutual-exclusion synchronization — protecting access to a shared
resource

I
Condition synchronization — waiting for a signal from another thread

The choice of synchronization and communication mechanisms is a critical
design choice

I Should these be independent or coupled?
I What guarantees should be provided?
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Concurrency

Concurrency is hard(?)
Concurrent programming has a reputation of being hard.

I The problem is that shared-memory concurrency using locks and
condition variables is the dominant model in concurrent languages.

I Shared-memory programming requires a defensive approach: protect
against data races.

I Synchronization and communication are decoupled.
I Shared state often leads to poor modularity.

Classic example:

x 0
parbegin x x + 1 || x x + 1 parend

write x
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Concurrency

Software transactional memory

I Software transactional memory (STM) has been offered as a solution.
I Introduces atomic regions that are serialized with other atomic regions.

x 0
atomic { x x + 1 } || atomic { x x + 1 }

write x

I Uses non-blocking techniques to increase potential parallelism.
I Some hardware support in the latest processors
I Ideal semantics is appealing: simple and intuitive.
I Reality is less so. Issues of nesting, exceptions, I/O, weak vs. strong

atomicity, make things much more complicated.
I Also, STM does not directly support conditional synchronization.
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Concurrency Message-passing

Message passing
In 1978, Tony Hoare proposed a concurrent programming model based on
independent processes that communicate via messages (CSP).

I Well-defined interfaces between independent, sequential, components.
I Natural encapsulation of state.
I Extends more easily to distributed implementation.
I Natural fit for functional programming (threads are just tail-recursive

functions).
I Inspired many language designs, including Concurrent ML, go (and its

predecessors), OCCAM, OCCAM-⇡, etc..
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Concurrency Message-passing

Message-passing design space

I Synchronous vs. asynchronous vs. RPC-style communication.
I Per-thread message addressing vs. channels
I Synchronization constructs: asymmetric choice, symmetric choice,

join-patterns.
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Concurrency Message-passing

Channels
For the rest of the lecture, we assume channel-based communication with
synchronous message passing.
In SML, we can define the following interface to this model:
type ’a chan

val channel : unit -> ’a chan

val recv : ’a chan -> ’a
val send : (’a chan

*

’a) -> unit

We also need to define a way to create threads:
val spawn : (unit -> unit) -> unit

CML 14



Concurrency Message-passing

Example: concurrent streams
We can connect threads together with channels to implement concurrent
streams.

Here is a function that creates the stream of integers 2, 3, 4, ...
fun countFrom2 () = let

val outCh = channel()
fun lp n = (send(outCh, n); lp(n+1))
in

spawn (fn () => lp 2); outCh
end

And here is a function that filters out multiples of a number from a stream
fun filter (inCh, p) = let

val outCh = channel()
fun lp () = let

val n = recv inCh
in

if (n mod p = 0) then lp() else (send(outCh, n); lp())
end

in

spawn lp; outCh
end

CML 15



Concurrency Message-passing

Example: concurrent streams (continued ...)

Using these two functions
val countFrom2 : unit -> int chan

val filter : int chan

*

int -> int chan

we can implement the Sieve of Eratosthenes for finding prime numbers:
fun sieve () = let

val outCh = channel()
fun head ch = let

val p = recv ch
in

send (outCh, p);
head (filter (ch, p))

end

in

spawn (fn () => head (countFrom2 ()));
outCh

end

CML 16



Concurrency Message-passing

Example: client-server concurrency
The other common pattern in concurrent programming is client-server
interactions.
A very simple example is a memory cell with the following API:
type ’a cell

val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val set : ’a cell

*

’a -> unit

We define a datatype to represent the two kinds of client requests:
datatype ’a req = GET | SET of ’a

And we represent a cell by a pair of channels
datatype ’a cell = CELL of {

reqCh : ’a req chan,
replyCh : ’a chan

}

CML 17



Concurrency Message-passing

Example: client-server concurrency (continued ...)

The cell function creates a new server and returns the pair of channels used
to communicate with it:
fun cell init = let

val reqCh = channel() and replyCh = channel()
fun lp state = (case (recv reqCh)

of GET => (send(replyCh, state); lp state)
| SET v => lp v)

in

spawn (fn () => lp init);
CELL{reqCh = reqCh, replyCh = replyCh}

end

We can then define the matching client-side operations
fun get (CELL{reqCh, replyCh}) = (send(reqCh, GET); recv replyCh)

fun set (CELL{reqCh, ...}, v) = send(reqCh, SET v)

Notice that the client and server message operations match; if they did not
match, then there would be deadlock.

CML 18



Concurrency Message-passing

Choice
To support monitoring communications on multiple channels, we need a
choice operator that allows a thread to block on multiple channels.
For example, we might define the following function:
val selectRecv : (’a chan

*

(’a -> ’b)) list -> ’b

that takes a list of channels paired with actions and waits until a message is
available on one of the channels.

CML 19



Concurrent ML

Interprocess communication
In practice, it is often the case that

I interactions between processes involve multiple messages.
I processes need to interact with multiple partners (nondeterministic

choice).
These two properties of IPC cause a conflict.
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Interprocess communication (continued ...)

For example, consider a possible interaction between a client and two
servers.

request

reply / ack

nack

request

Server1 Server2Client
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Interprocess communication (continued ...)

Without abstraction, the code is a mess.
let val replCh1 = channel() and nack1 = cvar()

val replCh2 = channel() and nack2 = cvar()

in

send (reqCh1, (req1, replCh1, nack1));

send (reqCh2, (req2, replCh2, nack2));

selectRecv [

(replCh1, fn repl1 => ( set nack2; act1 repl1 ),

(replCh2, fn repl2 => ( set nack1; act2 repl2 )

]
end

But traditional abstraction mechanisms do not support choice!
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Concurrent ML
The conflict between choice and abstraction was the prime motivation
behind the design of Concurrent ML.

I CML provides a uniform framework for synchronization: events.
I CML provides event combinators for constructing abstract protocols.
I Event provide a uniform framework for many different kinds of event

constructors:
I I-variables
I M-variables
I Mailboxes
I Channels
I Timeouts
I Thread termination
I Synchronous I/O
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Events

I We use event values to package up protocols as first-class abstractions.
I An event is an abstraction of a synchronous operation, such as

receiving a message or a timeout.
type ’a event

I Base-event constructors create event values for communication
primitives:
val recvEvt : ’a chan -> ’a event

val sendEvt : ’a chan

*

’a -> unit event
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Events (continued ...)

Event operations:
I Event wrappers for post-synchronization actions:

val wrap : (’a event

*

(’a -> ’b)) -> ’b event

I Event generators for pre-synchronization actions and cancellation:
val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

I Choice for managing multiple communications:
val choose : ’a event list -> ’a event

I Synchronization on an event value:
val sync : ’a event -> ’a
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Example: Swap channels
A swap channel is an abstraction that allows two threads to swap values.
type ’a swap_chan

val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan

*

’a -> ’a event
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Example: Swap channels (continued ...)

The basic implementation of swap channels is straightforward.
datatype ’a swap_chan = SC of (’a

*

’a chan) chan

fun swapChannel () = SC(channel ())

fun swap (SC ch, vOut) = let

val inCh = channel ()
in

select [
wrap (recvEvt ch,
fn (vIn, outCh) => (send(outCh, vOut); vIn)),

wrap (sendEvt (ch, (vOut, inCh)),
fn () => recv inCh)

]
end

The select function is shorthand for sync o choose.
Note that the swap function both offers to send and receive on the channel so
as to avoid deadlock.
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Making swap channels first class
We can also make the swap operation first class
val swapEvt : ’a swap_chan

*

’a -> ’a event

by using the guard combinator to allocate the reply channel.
fun swapEvt (SC ch, vOut) = guard (fn () => let

val inCh = channel ()
in

choose [
wrap (recvEvt ch,

fn (vIn, outCh) => (send(outCh, vOut); vIn)),
wrap (sendEvt (ch, (vOut, inCh)),

fn () => recv inCh)
]

end)
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Two-server interaction using events
Server abstraction:
type server
val rpcEvt : server

*

req -> repl event

The client code is no longer a mess.
select [

wrap (rpcEvt server1, fn repl1 => act1 repl1 ),

wrap (rpcEvt server2, fn repl2 => act2 repl2 )

]
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Two-server interaction using events (continued ...)

The implementation of the server protocol is as before, but we can now
package it up as an event-valued abstraction:
datatype server = SERVER of (req

*

repl chan

*

unit event) chan

fun rpcEvt (SERVER recCh, req) = withNack (fn nack => let

val replCh = channel ()
in

send (reqCh, (req, replCh, nack));
revcEvt replCh

end)
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Other abstractions
Events have been used to implement a wide range of abstractions in CML,
including:

I Futures
I Promises (asynchronous RPC)
I Actors
I Join patterns
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Example — distributed tuple spaces
The Linda family of languages use tuple spaces to organize distributed
computation.
A tuple space is a shared associative memory, with three operations:

output adds a tuple.
input removes a tuple from the tuple space. The tuple is selected by

matching against a template.
read reads a tuple from the tuple space, without removing it.

val output : (ts
*

tuple) -> unit
val input : (ts

*

template) -> value list event

val read : (ts
*

template) -> value list event
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Distributed tuple spaces (continued ...)

There are two ways to implement a distributed tuple space:
I

Read-all, write-one

I
Read-one, write-all

We choose read-all, write-one. In this organization, a write operation goes
to a single processor, while an input or read operation must query all
processors.
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Distributed tuple spaces (continued ...)

The input protocol is complicated:
1. The reader broadcasts the query to all tuple-space servers.
2. Each server checks for a match; if it finds one, it places a hold on the

tuple and sends it to the reader. Otherwise it remembers the request to
check against subsequent write operations.

3. The reader waits for a matching tuple. When it receives a match, it
sends an acknowledgement to the source, and cancellation messages to
the others.

4. When a tuple server receives an acknowledgement, it removes the
tuple; when it receives a cancellation it removes any hold or queued
request.
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Distributed tuple spaces (continued ...)

Here is the message traffic for a successful input operation:

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

request

accept

Remote
Tuple Server

reply
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Distributed tuple spaces (continued ...)

We use negative acknowledgements to cancel requests when the client
chooses some other event.

Local
Tuple-server

Proxy

Remote
Tuple-server

ProxyClient

recv

recv

recv

recv

select

ev
request

cancel

Remote
Tuple Server

Note that we must confirm that a client accepts a tuple before sending out
the acknowledgement.
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Multithreading via continuations

Implementing concurrency in functional languages

I Functional languages can provide a platform for efficient
implementations of concurrency features.

I This is especially true for languages that support first-class
continuations.
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Continuations
Continuations are a semantic concept that captures the meaning of the “rest
of the program.”

In a functional language, we can apply the continuation-passing-style

transformation to make continuations explicit.

For example, consider the expression “(x+y)
*

z.” We can rewrite it as
follows:
(fn k => k(x+y)) (fn v => v

*

z)

In this rewritten code, the variable k is bound to the continiation of the
expression “x+y.”
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First-class continuations
Some languages make it possible to reify the implicit continuations. For
example, SML/NJ provides the following interface to its first-class
continuations:
type ’a cont

val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

First-class continuations can be used to implement many kinds of
control-flow, including loops, back-tracking, exceptions, and various
concurrency mechanisms.

CML 39



Multithreading via continuations

Coroutines
Implementing a simple coroutine package using continuations is
straightforward.
val fork : (unit -> unit) -> unit
val exit : unit -> ’a
val yield : unit -> unit
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Coroutines (continued ...)

val rdyQ : unit cont Q.queue = Q.mkQueue()

fun dispatch () = throw (Q.dequeue rdyQ) ()

fun yield () = callcc (fn k => (
Q.enqueue (rdyQ, k);
dispatch ()))

fun exit () = dispatch ()

fun fork f = callcc (fn parentK => (
Q.enqueue (rdyQ, parentK);
(f ()) handle _ => ();
exit ()))
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Adding synchronization
To allow our threads to communicate, we will add support for ivars, which
are write-once synchronous variables.
type ’a ivar

fun ivar : unit -> ’a ivar
val get : ’a ivar -> ’a
val put : ’a ivar

*

’a -> unit

An ivar can either be empty (possibly with waiting threads) or full with a
value, as reflected in the following representation:
datatype ’a ivar_state
= EMPTY of ’a cont list
| FULL of ’a

datatype ’a ivar = IV of ’a ivar_state ref

Ivars are created in the empty state:
fun ivar = ref(EMPTY[])

CML 42



Multithreading via continuations

Adding syncronization (continued ...)

To get a value from an ivar, we check its state and block if it is empty.
fun get (IV r) = (case !r

of EMPTY waiting => callcc (fn resumeK => (
r := EMPTY(resumeK :: waiting);
dispatch()))

| FULL v => v)

fun put (IV r, v) = (case !r
of EMPTY waiting => (

r := FULL v;
List.app (bindAndEnqueue v) waiting)

| FULL v => raise Fail "already set")

The tricky part is the bindAndEnqueue function, which turns an ’a cont into a
unit cont and then enqueues it on the scheduling queue.
fun bindAndEnqueue (v : ’a) (k : ’a cont) : unit =

Q.enqueue (rdyQ,
callcc (fn k’ => (
callcc (fn unitK => throw k’ unitK);
throw k v)))
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Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44



Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44



Multithreading via continuations

Preemption and parallelism

I We can add preemptive scheduling by representing timer interrupts as
asynchronous operations that reify the program state as a continuation.

I Adding preemption does require a mechanism for masking interrupts.
I We can also extend this model to support multicore parallelism, but

that requires low-level shared-memory synchronization mechanisms to
prevent race conditions when accessing the scheduling queues, etc.

CML 44


	Introduction
	Programming models
	Concurrency
	Message-passing

	Concurrent ML
	Concurrent ML
	Multithreading via continuations

