
Design
OO

Class Diagram
Sequence Diagram

What is the first P.L. you learned?

Object-Oriented Programming, Classes

• Class
• Data + Operation

• Encapsulation

• Polymorphism

• Inheritance

• Enhance modularity!

Encapsulation

• “the packing of data and functions into a single component. The
features of encapsulation are supported using classes. It allows
selective hiding of properties and methods in a class by building an
impenetrable wall to protect the code from accidental corruption.”

Encapsulation

• “the packing of data and functions into a single component. The
features of encapsulation are supported using classes. It allows
selective hiding of properties and methods in a class by building an
impenetrable wall to protect the code from accidental corruption.”

• Implication to design?

Polymorphism

• “to process objects differently depending on their data type or class.
More specifically, it is the ability to redefine methods for derived
classes”

• “the provision of a single interface to entities of different types.”

• Examples

Polymorphism

• “to process objects differently depending on their data type or class.
More specifically, it is the ability to redefine methods for derived
classes”

• “the provision of a single interface to entities of different types.”

• Implication to design?

• Benefits?

• Problems?

Inheritance

• “a mechanism for code reuse and to allow independent extensions of
the original software via public classes and interfaces.”

• Examples

Inheritance

• “a mechanism for code reuse and to allow independent extensions of
the original software via public classes and interfaces.”

• Implication to design?

• Benefits?

• Problems?

Class diagram

• Describes the types of objects in the system

• Describes the static relationships among them

http://en.wikipedia.org/wiki/Class_diagram

How to decide/design classes?

• Data+operation

Components of class diagrams

• Class name

• Class properties
• Attributes
• Associations (could be bi-directional)

visibility name : type [multiplicity] = default {property-string}

• Class operations
Visibility name (parameter list) : return-type {property-string}

• Generalization
• Inheritance (subclass, super class, interface, …)

• Dependency

• Constraints {}

student

- string name = “Bob” {final}
- int age {<150}

+ Bool register (CSClass c);
…
…

CSClass

- string name = “Intro” {final}
- int capacity

+ Bool register (Class c);
…
…

*
- enrolled

Class student{
private:

final string name;
int age;
Set enrolledSet<CSClass>;

public:
student (string n, int a);
bool register (CSClass c);
…

}

• * represents unknown number of CSClass property objects of a student object
• If we put a constant number, like 4, here, we should replace the “Set” data structure into Array

How to turn class diagram to code

• A private attribute → ??

• A * attribute/association → ??

• Class declaration
• Some attributes may not map to fields

Advanced Class-Diagram Features

• Composition vs. Aggregation
• Belong to relationship

• Composition: single owner, disappear with the owner

• Abstract class

• Template class

We didn’t talk about this in lecture, so this will not appear in quiz/exam

What are the constraints to set?

• Assertion
• Pre-condition

• Post-condition

• Invariant

We didn’t talk about this in lecture, so this will not appear in quiz/exam

Sequence diagram

• Describes how objects collaborate/interact with each other in one
scenario

Components of sequence diagram

• Participants

• Life-line

• Activation bar

• Message
• Regular calls, self calls

• Creating and deleting object

• Loops and conditionals
• loop, alt, opt

http://en.wikipedia.org/wiki/Sequence_diagram

Sequence diagram example 1

Sequence diagram example 2

registerClasses(Course[] courses)

loop

[for every course]

alt [full]

[else]

Summary

• Class diagram

• Sequence diagram

