
Refactoring
What to refactor
Refactor to what

How to conduct the refactoring

This website is also very informative
https://refactoring.com/catalog/

Definitions

• Changing/improving the code structure w/o changing the program
semantics

Key principles in refactoring

• Where to refactor
• Code smell

• Refactor to what
• Is it worthwhile to refactor?

• How to refactor?
• What to change? (don’t miss anything!)
• What are the steps? (keep each step as small as possible!)
• Testing after every step of change

Use automated refactoring tool whenever you can

Example 1

• What if the name of a method is not clear?

• Why should we make this change?

• What should we change?

What to change?

• Method declaration
• Caller
• Super classes, sub classes
• Test cases
• Documentation

How to change?

How to change?

• Check if the method is inherited from super class
• …

• Create a new method, declare it, copy the code
• Let the old method calls the new method
• If the old method is used in many places

• Replace the old method every place it is called
• Remove the old method

Example 1

• What if the parameter list is too long?

When is this change worthwhile?

• Many methods have same parameters
• The parameter list is very long

What needs to be done?

What needs to be done?

• Add a new class that will represent the list of parameters
• Change test cases
• Change documentation

• Change function prototype
• Change super/sub classes
• Change all the call site
• Change function prototype implementation
• Change test cases
• Change documentation

Refactoring steps

13

Introduce Parameter Object (1)

• Make a new class for the group of parameters
• Change the function prototype to add a new object
• Check superclasses and subclasses
• Make copy of old method, add parameter
• Change body of old method so that it calls new one
• Find all references to the old method and change them to refer to the new
• Test should run after each change
• Remove old method

• Change the function prototype to delete one parameter at a time
• How?

14

Introduce Parameter Object (2)

• For each of the original parameters:
• Modify caller to store parameter in the new object and omit parameter from

call
• Modify method body to omit original parameter and to use the value stored

in the new parameter
• If method body calls another method with parameter object, use existing

parameter object instead of making a new one

class Account …
double getFlowBetween(Date start, Date end) {

double result = 0;
Enumeration e = _entries.elements();
while (e.hasMoreElements()) {

Entry each = (Entry) e.nextElement();
Date date = each.getDate();
if (date.equals(start) || date.equals(end) ||

(date.after(start) && date.before(end))) {
result += each.getValue();

}
}
return result;

}

15

class DateRange {
DateRange (Date start, Date end) {

_start = start;
_end = end;

}
Date getStart() {

return _start;
}
Date getEnd() {

return _end;
}
private final Date _start;
private final Date _end;

}

16

class Account …
double getFlowBetween(Date start, Date end, DateRange range) {

double result = 0;
Enumeration e = _entries.elements();
while (e.hasMoreElements()) {

Entry each = (Entry) e.nextElement();
Date date = each.getDate();
if (date.equals(start) || date.equals(end) ||

(date.after(start) && date.before(end))) {
result += each.getValue();

}
}
return result;

}

17

18

Changing callers (1)

double flow = anAccount.getFlowBetween(startDate, endDate);

double flow = anAccount.getFlowBetween(startDate, endDate, new
DateRange(null, null))

19

double flow = anAccount.getFlowBetween(startDate, endDate, new
DateRange(null, null))

double flow = anAccount.getFlowBetween(endDate, new
DateRange(startDate, null))

Changing callers (2)

20

double flow = anAccount.getFlowBetween(startDate, endDate, new
DateRange(null, null))

double flow = anAccount.getFlowBetween(endDate, new
DateRange(??, ??))

Changing callers (2)

class Account …
double getFlowBetween(Date end, DateRange range) {

double result = 0;
Enumeration e = _entries.elements();
while (e.hasMoreElements()) {

Entry each = (Entry) e.nextElement();
Date date = each.getDate();
if (date.equals(range.getStart()) || date.equals(end) ||

(date.after(range.getStart()) && date.before(end))) {
result += each.getValue();

}
}
return result;

}

21

class Account …
double getFlowBetween(DateRange range) {

double result = 0;
Enumeration e = _entries.elements();
while (e.hasMoreElements()) {

Entry each = (Entry) e.nextElement();
Date date = each.getDate();
if (date.equals(range.getStart()) ||

date.equals(range.getEnd()) ||
(date.after(range.getStart()) &&

date.before(range.getEnd()))) {
result += each.getValue();

}
}
return result;

}

22

23

double flow = anAccount.getFlowBetween(endDate, new
DateRange(startDate, null))

double flow = anAccount.getFlowBetween(new DateRange(startDate,
endDate))

Changing callers (3)

24

Introduce Parameter Object

After introducing a parameter object, look to see if code should be
moved to its methods

??

25

Introduce Parameter Object

After introducing a parameter object, look to see if code should be
moved to its methods

class DateRange …
boolean includes (Date arg) {

return (arg.equals(_start) || arg.equals(_end) || (arg.after(_start) &&
arg.before(_end)));

}

class Account …
double getFlowBetween(DateRange range) {

double result = 0;
Enumeration e = _entries.elements();
while (e.hasMoreElements()) {

Entry each = (Entry) e.nextElement();
if (range.includes(each.getDate())) {

result += each.getValue();
}

}
return result;

}

26

Lessons

• Refactorings should be small
• Test cases
• Version control

• Check after each step to make sure you didn’t make a mistake
• One refactoring leads to another
• Major change requires many refactorings

27

More OO refactoring

Example 4 pull up method

• What if there is code duplication across two classes?

• Why is it worthwhile?
• What to do?
• What are the steps?

• The example on the next page requires a series of code refactoring
that include pull up methods and will help remove code redundancy

Class Person{
private:
string First;
string Last;
string Address;

}

Class Female: public Person{
public:

void printName() {
cout << “Ms. ”<<First<<“ “<<Last;

}
void printAddress(){

cout << “Ms. ”<<First<<“ “
<<Last<<endl<<Address;

}
}

Class Male: public Person{
public:

void printName() {
cout << “Mr. ”<<First<<“ “<<Last;

}
void printAddress(){

cout << “Mr. ”<<First<<“ “
<<Last<<endl<<Address;

}
}

Class Person{
private:

string First;
string Last;
string Address;

Public:
void printName();
void printAddress();

}
Class Person::PrintAddress(){

printName();
cout <<endl<<Address;

}

Class Female: public Person{
public:

void printName() {
cout << “Ms. ”<<First<<“ “<<Last;

}
}

Class Male: public Person{
public:

void printName() {
cout << “Mr. ”<<First<<“ “<<Last;

}
}

Example 5 push down methods

• When does that happen?
• What to do?
• This refactoring common comes together with “extract sub-class”

Example 5 push down methods

• When does that happen?
• When the super class’ default implementation does not work for most of the

sub-classes
• What to do?
• Remove the default implementation, turn that into a virtual method
• Make sure that every sub-class has its implementation of that method

• This refactoring common comes together with “extract sub-class”

Example 6: extract sub-class

• Extract sub-class
• When to use what?

• We have a class A
• Some of its properties are used under context 1, some other are used under context 2
• Its method implementation contains if/else, switch/case depending on context 1 or 2

• What to do?

Example 6: extract sub-class

• Extract sub-class
• When to use what?

• We have a class A
• Some of its properties are used under context 1, some other are used under context 2
• Its method implementation contains if/else, switch/case depending on context 1 or 2

• What to do?
• Create sub-classes for class A that represent different contexts
• Some properties that are only used for one context can be pushed down to

sub-classes
• Some methods that are implemented using if/else can be pushed down to

sub-classes with polymorphism there

• The example on the next slide requires extract sub-class refactoring
• The JobItem class has two usage contexts:
• 1. The job item is an item, the cost is about material cost
• 2. the job item is about labor, the cost is about labor fee
• The “_employee” property of the JobItem has no meaning when it is a non-

labor JotItem
• The “getUnitPrice” method contains if/else depending on the context

• Refactoring for this example
• Create a LaborJobItem sub-class
• Move _employee property down to that sub-class
• Replace if/else in getUnitPrice with polymorphism of getUnitPrice

class JobItem ...
public JobItem (int unitPrice, int quantity,
boolean isLabor, Employee employee) {
_unitPrice = unitPrice;
_quantity = quantity;
_isLabor = isLabor;
_employee = employee;

}

public int getTotalPrice() {
return getUnitPrice() * _quantity;

}

public int getUnitPrice(){
return (_isLabor) ?
_employee.getRate():
_unitPrice;

}

public int getQuantity(){
return _quantity;

}
public Employee getEmployee() {
return _employee;

}
private int _unitPrice;
private int _quantity;
private Employee _employee;
private boolean _isLabor;

class Employee...
public Employee (int rate) {
_rate = rate;

}
public int getRate() {
return _rate;

}
private int _rate;

Example 7: extract super-class

• When to do?
• What to do?

Example 7: extract super-class

• When to do?
• Two classes share many properties and operations

• What to do?
• Create a super class
• Move common properties and operations up

• Leave unique properties and operations in each sub-class
• Turn some if/else, switch/case into simple method call (polymorphism) …

• The code on the next two pages smell
• Desired refactoring:
• create a super class for Employee and Department

class Employee...
public Employee (String name, String id, int annualCost)
{
_name = name;
_id = id;
_annualCost = annualCost;

}
public int getAnnualCost() {
return _annualCost;

}
public String getId(){
return _id;

}
public String getName() {
return _name;

}
private String _name;
private int _annualCost;
private String _id;

public class Department...
public Department (String name) {
_name = name;

}
public int getTotalAnnualCost(){
Enumeration e = getStaff();
int result = 0;
while (e.hasMoreElements()) {
Employee each = (Employee) e.nextElement();
result += each.getAnnualCost();

}
return result;

}
public int getHeadCount() {
return _staff.size();

}
public Enumeration getStaff() {
return _staff.elements();

}
public void addStaff(Employee arg) {
_staff.addElement(arg);

}
public String getName() {
return _name;

}
private String _name;
private Vector _staff = new Vector();

Be careful …

• Separate changing behavior from refactoring
• Changing behavior requires new tests
• Refactoring must pass all tests

• Only refactor when you need to
• Before you change behavior
• After you change behavior
• To understand

44

Some other refactorings

• Composing methods
• Extract method
• Inline method
• Inline temporary variable
• Introduce explaining variable
• Split temporary variable
• Replace method with method object
• …

45

We didn’t talk about these in lecture. These won’t be in exams/quizzes.

Automated refactoring support

• Deciding where to refactor
• Tools for measuring cohesion, size, etc.
• Tools for measuring code duplication/cloning

• Performing the change
• Refactoring Browser for Smalltalk, first
• Over a dozen of tools for Java
• Eclipse

46

