01. Course Introduction; Threat Modeling

Ben Zhao, Blase Ur, David Cash October 1st, 2018 CMSC 23200 / 33250

Today's class

- Course requirements / structure
- The security mindset
- Threat modeling

Website / Syllabus

https://www.classes.cs.uchicago.edu/archive/ 2018/fall/23200-1/

or

https://bit.ly/20meFa2

Undergraduate (2-) vs. Graduate (3-)

- Shared requirements:
 - -7 assignments
 - Take-home, open-book midterm exam
 - Closed-book final exam
 - Class participation
- Graduate (3-) only:
 - Research project in groups of 2 3 students
 - Weekly reading "reviews"

Are you not signed up yet?

- Currently 75 students enrolled
 - 61 for 23200 (undergraduate)
 - 14 for 33250 (graduate)
- Want to switch from 23200 to 33250?
 - Submit a consent request
- Do you not have a seat at all?
 - We will try our best...
 - -...but there are 26 pending consent requests

Three instructors?!?

- **David Cash**: Cryptography, secure communication, security protocols
 - Office hours Tuesdays 2:30p 4:00p or by appointment
 - Office: Crerar 353
 - Also teaches classes on crypto

Three instructors?!?

- Ben Zhao: Network security, underground economies, anonymity, ML security
 - Office hours by appointment
 - Office: Crerar 369
 - Also teaches classes on networks

Three instructors?!?

- Blase Ur: Authentication, access control, web security, systems security
 - Office hours Mondays 1:00p 2:00p or by appointment
 - Office: Crerar 363
 - Also teaches classes on usable security

Two TAs

Minhaj Khan

- Office hours Thursdays 11:00a 12:00p or by appointment
- Office: Crerar 391 Desk 19

- Xu Zhang
 - Office hours Wednesdays 1:00p 2:00p or by appointment
 - Office: Crerar 381 Desk 20

The security mindset

- Imagine that you anticipate Ben Zhao has a copy of the midterm exam. You want this exam.
- We will now go through an exercise in threat modeling, which is the process of systematically identifying and enumerating the potential threats to a system

Step 1: Identify assets of value

• What are those assets?

- In this case, a copy of the exam

- What is the value of those assets?
 - Can we place a dollar value on having a copy of the exam?
 - What factors impact this calculation?
 - Your expected score on the exam without cheating
 - How your grade in this class will impact your future
 - Whether other people will get a copy

Where might the exam be stored?

- Ben's laptop
- Ben's desktop
- Ben's tablet
- Ben's phone
- Ben's UChicago email
- Ben's personal email
- Blase's / David's / TAs' email accounts or computers
- Github / other version-control repository
- The memory of a printer / copier in the CS building
- A recycling bin or garbage can in Crerar
- A garbage dump somewhere in the city of Chicago
- Email account or computer of an exam proctor / accommodations coordinator / admin

Step 2: Enumerate the attack surface

- The attack surface is the full set of points of entry into the system
- What is the attack surface for Ben's email?
 - Guess his password
 - Compromise UChicago's email server
 - Make friends with UChicago IT (insider threat)
 - Passively watch network traffic
 - …(many more)

Attack surface for laptop

- Physical access to laptop
 - Pick lock in Ryerson
 - Dress up like Ben and get UCPD to help you get back into "your" office (social engineering)
 - Dress up like admin staff or custodial staff
 - Bribe his family
 - Bring a baseball bat to a dark street corner
 - Strategically pull the fire alarm

Attack surface for laptop

- Remote, virtual access
 - Send Ben a phishing email with a keylogger
 - Send Ben a phishing email asking for his password
 - Try to ssh into his laptop (guess password)
 - Introduce a backdoor into software he uses
 - Introduce a backdoor into the hardware
 - Buy a zero-day exploit
 - Conduct a fake tech support scam

Attack surface for laptop

- Physical proximity to laptop
 - Point a camera at the screen through the window
 - Slide a microphone under the door
 - Drop a USB key outside Ben's office containing a keylogger
 - Eavesdrop on the network traffic
 - Set up your own "UChicago" wifi access point (rogue AP, active man in the middle attack)

Step 3: Model attackers

- Map attackers to the things of value that they are after
- What resources do these attackers have?
 - Are they a casual thief? A computer expert? The FBI? A secretive nation-state?
- How much effort will they expend?
- Local vs. remote attacker
- Passive vs. active attacker

Step 4: Consider mitigations

- How can we minimize the likelihood that each attack vector will be used?
- Weight costs and benefits

Mitigations can be unpleasant

- Some organizations can legally (or physically) compel you to unlock your device
- Destroying a device can be considered obstruction of justice
- Not using cloud services or modern features can be annoying
- Updating / patching devices is annoying
 And imperfect!

How can we keep something secure?

What properties do we want?

- **Confidentiality**: Information hidden from people who should not be able to view it
- Integrity: Information is consistent, accurate, and trustworthy; it has not been secretly modified
- Availability: One can readily access the system or resource
- This is the "CIA Model"