Modern Ciphers CMSC 23200/33250, Autumn 2018, Lecture 3

David Cash

University of Chicago

Plan for today

- 1. Very brief recap
- 2. OTP and issues with OTP
- 3. Shortening key-length: OTP with a stream cipher
- 4. Block ciphers

Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on {A,... Z}. Apply π to each character of m.

P: ATTACKATDAWN K: π– C: ZKKZAMZKYZGT How many keys? $26! \approx 2^{88}$ 9 million years to try all keys at rate of 1 trillion/sec

Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⊕M

<u>Decrypt(K,C)</u>: Output K⊕C

Correctly decrypts because

 $K \oplus C = K \oplus (K \oplus m) = (K \oplus K) \oplus m = m$

<u>Q</u>: Is the one-time pad secure? <u>Bigger Q</u>: What does "secure" even mean?

Evaluating Security of Crypto

<u>Kerckhoff's Principle</u>: Assume adversary knows your algorithms and implementation. The only thing it doesn't know is the key.

- 1. Quantify adversary goals
 - Learn something about plaintext? Spoof a message?
- 2. Quantify adversary capabilities

View ciphertexts? Probe system with chosen inputs?

3. Quantify computational resources available to adversary Compute cycles? Memory?

Breaking Encryption - A Basic Game

Ciphertext-only attack: The adversary sees ciphertexts and attempts to recover some useful information about plaintexts.

More attack settings in next lecture.

What is useful information?

- Recovering entire messages is useful
- But recovering partial information is also be useful

A lot of information is missing here.

But can we say who this is?

- Attacker may know large parts of plaintext already (e.g. formatting strings or application content). The attacker tries to obtain something it doesn't already know.

M = http://site.com?password=

"Attacks" versus "Security"

An **attack** is successful as long as it recovers <u>some</u> useful information about plaintext.

Encryption should hide <u>all possible partial information</u> about plaintexts, since what is useful is situation-dependent.

Does an attack need to recover the key?

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption without recovering the key.

<u>Claim</u>: If adversary sees **only one** ciphertext under a random key, then any plaintext is equally likely, so it cannot recover any partial information <u>besides plaintext</u> <u>length</u>.

Ciphertext observed: 10111Possible plaintext:00101 \Rightarrow Possible key:10010

- 1. Adversary goal: Learn partial information from plaintext
- 2. Adversary capability: Observe a single ciphertext
- 3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad

- 1. Reusing a pad is insecure
- 2. One-Time Pad is *malleable*
- 3. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

Issue #1: Reusing a One-Time Pad is Insecure

Has led to real attacks:

- Project Venona (1940s) attack by US on Soviet encryption
- MS Windows NT protocol PPTP
- WEP (old WiFi encryption protocol)
- Frequency table of x⊕y for English

Issue #2: One-Time Pad is Malleable

Issue #3: One-Time Pad Needs a Long Key

<u>Can prove</u>: Any cipher as secure as the OTP must have: Key-length \geq Plaintext-length

In practice: (covered in next few lectures):

- Use stream cipher: Encrypt(K,m) = G(K)⊕m
- Add authentication tag
- Use nonces to encrypt multiple messages

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input and produces an very long bit-string as output.

Use G(seed) in place of pad. Still malleable and still one-time, but key is shorter.

Stream Cipher Security Goal (Sketch)

<u>Security goal</u>: When \mathbf{k} is random and unknown, $\mathbf{G}(\mathbf{k})$ should "look" random.

... even to an adversary spending a lot of computation.

Much stronger requirement that "passes statistical tests".

Brute force attack: Given y=G(k), try all possible k and see if you get the string y.

<u>Clarified goal</u>: When k is random and unknown, G(k) should "look" random to anyone with less computational power needed for a brute force attack.

(keylength = 256 is considered strong now)

Internal state: Array s of 256 bytes and ptrs i, j

Pad reuse can still happen with stream ciphers

•••

Addressing pad reuse: Stream cipher with a nonce

Stream cipher with a nonce: Algorithm G that takes **two inputs** and produces an very long bit-string as output.

- "nonce" = "number once".

- Usually denoted IV = "initialization vector"

Security goal: When k is random and unknown, G(IV,k) should "look" random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

- If nonce repeats, then pad repeats

IEEE 802.11b WEP: WiFi security standard '97-'03

IV is 24-bit wide counter

- Repeats after 2^{24} frames (≈ 16 million)
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

IEEE 802.11b WEP: WiFi security standard '97-'03

	BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE FORUMS		
- Re - Of	Serious flaw in WPA2 protocol lets attackers intercept passwords and much more		
	KRACK attack is especially bad news for Android and Linux users. DAN GOODIN - 10/15/2017, 11:37 PM		
Solutions: (W parameters to their initial values. KRACK forces the nonce reuse in a way that allows the encryption to be bypassed. Ars Technica IT editor Sean Callagner has much more about KRACK here.			

- Set IV to combination of packet number, address, etc

Issues with One-Time Pad

1. Reusing a pad is insecure V Use unique nonces

- 2. One-Time Pad is *malleable*
- 3. One-Time Pad has a long key VUse stream cipher with sort key

More difficult to address; We will return to this later.

Next Up: Blockciphers

Blockciphers are a ubiquitous crypto tool applied to many different problems.

Informal definition: A <u>blockcipher</u> is essentially a substitution cipher with a very large alphabet and a very compact key. Require that efficient algorithms for forward and backward directions.

<u>Typical parameters:</u> Alphabet = $\{0,1\}^{128}$ Key length = 16 bytes.

Plan: Build many higher-level protocols from a good blockchiper. Now: Two example blockciphers, DES and AES.

Data Encryption Standard (DES)

- Originally a designed by IBM
- Parameters adjusted by NSA
- NIST Standard in 1976
 - Block length n = 64
 - Key length k = 56

Parses input block into 32-bit chunks and applies 16 rounds of a "Feistel Network"

Attack	Complexity	Year
Biham&Shamir	247 encrypted blocks	1992
DESCHALL	41 days	1997
EFF Deepcrack	4.5 days	1998
EFF Deepcrack	22 hours	1999

- 3DES ("Triple DES") is still used by banks
- 3DES encrypts three times (so key length is 118)
- 3DES is not known to be broken but should be avoided

Advanced Encryption Standard (AES)

- NIST ran competition to replace DES starting in 1997
- Several submissions, *Rijndael* chosen and standardized
- AES is now the gold standard blockcipher
- Very fast; Intel chips even have AES instructions

Advanced Encryption Standard (AES)

- Due to Rijmen and Daemen
 - Block length n = 128
 - Key length k = 128, 192, 256

- Different structure from DES.
- 10 rounds of "substitutionpermutation"

AES is not (know to be) broken

Attack	Complexity	Year	
Bogdanov et al.	≈ 2 126.1	2011	

- Compare to trying all keys: $2^{126.1} \approx 2^{128}/4$
- Always prefer AES for a blockcipher if setting can support it (i.e. everything except low-power hardware)

Brief Aside: Computational Strength Today

# Steps	Who can do that many?
256	Strong computer with GPUs
280	All computers on Bitcoin network in a few days
2128	Very large quantum computer*
2192	Nobody?
2256	Nobody?

*Not directly comparable but this is an estimate of equivalent power. Quantum computers are most effective against public-key crypto, but they also speed up attacks on symmeric-key crypto. (More next week.)