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Plan for today

1. Very brief recap 
2. OTP and issues with OTP 
3. Shortening key-length: OTP with a stream cipher 
4. Block ciphers



Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on {A,… Z}. 
Apply π to each character of m.

P:  ATTACKATDAWN 
K:  π 
C:  ZKKZAMZKYZGT

x π(x)
A Z
B U
C A
D Y
E R
F E
G X
H B
I D
J C
K M
L Q
M H
N T
O I
P S
Q V
R N
S P
T K
U O
V F
W G
X W
Y L
Z J

How many keys? 
26! ≈ 288 

9 million years to try all keys at rate of 
1 trillion/sec



Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L 

Encrypt(K,M): Output K⨁M Example: 
0101 
1100⨁

1001Decrypt(K,C): Output K⨁C

Correctly decrypts because 
K⨁C = K⨁(K⨁m) = (K⨁K)⨁m = m

Q: Is the one-time pad secure?
Bigger Q: What does “secure” even mean?



Evaluating Security of Crypto

Kerckhoff’s Principle: Assume adversary knows your 
algorithms and implementation. The only thing it 
doesn’t know is the key.

1. Quantify adversary goals 
Learn something about plaintext? Spoof a message? 

2. Quantify adversary capabilities 
View ciphertexts? Probe system with chosen inputs? 

3. Quantify computational resources available to adversary 
Compute cycles? Memory?



Breaking Encryption - A Basic Game

C1, …, CqK
m1, …, mq m/ ⊥

K

Ciphertext-only attack: The adversary sees ciphertexts and 
attempts to recover some useful information about plaintexts.

More attack settings in next lecture.



What is useful information?

- Recovering entire messages is useful 
- But recovering partial information is also be useful

- Attacker may know large parts of plaintext already (e.g. 
formatting strings or application content). The attacker tries to 
obtain something it doesn’t already know. 
        M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is 
missing here. 
 
But can we say who this is?



“Attacks” versus “Security”

An attack is successful as long as it recovers some useful 
information about plaintext.

Encryption should hide all possible partial information about 
plaintexts, since what is useful is situation-dependent.



Does an attack need to recover the key?

C1, …, CqK
m1, …, mq m/ ⊥

K

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption 
without recovering the key.



Security of One-Time Pad

Claim: If adversary sees only one ciphertext under a 
random key, then any plaintext is equally likely, so it 
cannot recover any partial information besides plaintext 
length.

Ciphertext observed:    
Possible plaintext:         
⇒ Possible key:

10111
00101
10010

1. Adversary goal: Learn partial information from plaintext 
2. Adversary capability: Observe a single ciphertext 
3. Adversary compute resources: Unlimited time/memory (!)



Issues with One-Time Pad

1. Reusing a pad is insecure 
2. One-Time Pad is malleable 
3. One-Time Pad has a long key



Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad

C1

⨁

=

PWDHAMSTER

Pad

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=
Pad



Issue #1: Reusing a One-Time Pad is Insecure

S3CR3T1234

Pad

C1

⨁

=

3L33THXRRR

Pad

C2

⨁

=

C1 ⨁ C2

= S3CR3T1234 3L33THXRRR⨁

Has led to real attacks: 
- Project Venona (1940s) attack by US on Soviet encryption 
- MS Windows NT protocol PPTP 
- WEP (old WiFi encryption protocol) 
- Frequency table of x⨁y for English



Issue #2: One-Time Pad is Malleable

PAYALICE$1

Pad

C

⨁

=

=
C’

⨁

000ALICE00

000DAVID00

⨁

Decrypt(Pad, C’) = PAYDAVID$1



Issue #3: One-Time Pad Needs a Long Key

Can prove: Any cipher as secure as the OTP must have: 
Key-length ≥ Plaintext-length

In practice: (covered in next few lectures): 
- Use stream cipher: Encrypt(K,m) = G(K)⊕m  
- Add authentication tag 
- Use nonces to encrypt multiple messages 



Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input 
and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(seed) in place of pad. 
Still malleable and still one-time, but key is shorter.

Typically 16 or 32 bytes.Usually very, very large  
(petabytes if needed)

Key/Seed k:

G(k):



Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k) 
should “look” random. 

… even to an adversary spending a lot of computation.  
 
Much stronger requirement that “passes statistical tests”. 

Brute force attack: Given y=G(k), try all possible k and 
see if you get the string y. 

Clarified goal: When k is random and unknown, G(k) 
should “look” random to anyone with less computational 
power needed for a brute force attack. 

(keylength = 256 is considered strong now)



Example Stream Cipher: RC4

Internal state: Array S of 256 bytes and ptrs i, j 

To compute next output byte:

OUT

Warning: Broken

Then:   
- i=i+1 mod256
- j=j+S[i] mod256
- swap S[i] and S[j]

Not secure: Output bits  
are biased in easily  
detectable ways…. but 
only retired by major 
websites in 2016.

Replacement: Salsa20/
ChaCha, or AES-based 
methods to be discussed



Pad reuse can still happen with stream ciphers

m1         

⨁ G(k)       

k

k

ciphertext 

…

m2         

⨁

ciphertext 

G(k)       



Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”.  
- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two 
inputs and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security goal: When k is random and unknown, G(IV,k) should 
“look” random and independent for each value of IV. 



Solution 1: Stream cipher with a nonce

m1         

⨁ G(IV,k)    

k

k

ciphertext 

IV←0

IV 

IV←IV+1

…

m2         

⨁

ciphertext 

G(IV,k)    

IV 

- If nonce repeats, then pad repeats



Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV 

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million) 
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement) 
- Larger IV space, or force rekeying more often 
- Set IV to combination of packet number, address, etc



Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV 

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million) 
- Often set to zero on reset

Solutions: (WPA2 replacement) 
- Larger IV space, or force rekeying more often 
- Set IV to combination of packet number, address, etc



Issues with One-Time Pad

1. Reusing a pad is insecure 
2. One-Time Pad is malleable 
3. One-Time Pad has a long key

Use unique nonces

Use stream cipher with sort key

More difficult to address; We will return to this later.



Next Up: Blockciphers

Blockciphers are a ubiquitous crypto tool applied to many 
different problems.

Informal definition: A blockcipher is essentially a 
substitution cipher with a very large alphabet and a very 
compact key. Require that efficient algorithms for forward and 
backward directions.

Typical parameters:  
Alphabet = {0,1}128 
Key length = 16 bytes.

Now: Two example blockciphers, DES and AES.
Plan: Build many higher-level protocols from a good blockchiper.



Data Encryption Standard (DES)

- Originally a designed by IBM 
- Parameters adjusted by NSA 
- NIST Standard in 1976 

- Block length n = 64 
- Key length k = 56

L0 R0

L1 R1

⨁

F1

L2 R2

⨁

F2

Parses input block into 32-bit 
chunks and applies 16 
rounds of a “Feistel Network”



DES is Broken

Attack Complexity Year

Biham&Shamir 247 encrypted blocks 1992

DESCHALL 41 days 1997

EFF Deepcrack 4.5 days 1998

EFF Deepcrack 22 hours 1999

- 3DES (“Triple DES”) is still used by banks 
- 3DES encrypts three times (so key length is 118) 
- 3DES is not known to be broken but should be avoided 

Warning: Broken



Advanced Encryption Standard (AES)

- NIST ran competition to replace DES starting in 1997 
- Several submissions, Rijndael chosen and standardized 
- AES is now the gold standard blockcipher 
- Very fast; Intel chips even have AES instructions



- Due to Rijmen and Daemen 
- Block length n = 128 
- Key length k = 128,192,256

M

⨁

P1

- Different structure from DES. 
- 10 rounds of “substitution-

permutation”

Advanced Encryption Standard (AES)

K1

P2

K2

P3

⨁



AES is not (know to be) broken

Attack Complexity Year

Bogdanov et al. ≈2126.1 2011

- Compare to trying all keys: 2126.1  ≈ 2128 /4 

- Always prefer AES for a blockcipher if setting can 
support it (i.e. everything except low-power hardware)



Brief Aside: Computational Strength Today

# Steps Who can do that many?
256 Strong computer with GPUs
280 All computers on Bitcoin network in a few days
2128 Very large quantum computer*
2192 Nobody?
2256 Nobody?

*Not directly comparable but this is an estimate of equivalent power.  
Quantum computers are most effective against public-key crypto, but they  
also speed up attacks on symmeric-key crypto. (More next week.)


