
David Cash

Blockciphers Modes,
Authentication

CMSC 23200/33250, Autumn 2018, Lecture 4

University of Chicago

Plan

1. Blockciphers recall
2. Blockcipher modes (encrypting large messages)
3. Authentication: MACs
4. Authenticated Encryption
5. Padding Oracle Attacks

- Due to Rijmen and Daemen
- Block length n = 128
- Key length k = 128,192,256

M

⨁

P1

- Different structure from DES.
- 10 rounds of “substitution-

permutation”

Advanced Encryption Standard (AES)

K1

P2

K2

P3

⨁

Blockcipher Security

- AES is thought to be a good “Pseudorandom Permutation”

AESK()

x

AESK(x)
rand()

x

rand(x)
Vs

- Outputs all look random and independent, even when
inputs are maliciously controlled.

- Formal definition in CS284.

Example - AES Input/Outputs

-K1: 9500924ad9d1b7a28391887d95fcfbd5
-K2: 9500924ad9d1b7a28391887d95fcfbd6

AESK1(00..00)=8b805ddb39f3eee72b43bf95c9ce410f
AESK1(00..01)=9918e60f2a20b1b81674646dceebdb51
AESK2(00..00)=1303270be48ce8b8dd8316fdba38eb04
AESK2(00..01)=96ba598a55873ec1286af646073e36f6

- Keys and inputs are 16 bytes = 128 bits

So we have a blockcipher…

- Now what? 
 
It only processes 16 bytes at a time, and I have a whole
lot more data than that.  
 
This next step is where everything flies off the rails in
implementations…

Encrypting large files: ECB Warning: Broken

AESK()

- ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . .

AES-ECBk(M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- For i=1…t:

- Ci ← AESk(Mi)
- Return C1 ,…, Ct

The ECB Penguin Warning: Broken

- 16 byte chunks are consecutive pixels

- It gets even worse…

Plaintext ECB Ciphertext

- Seeing penguins is bad, but it doesn’t mean you can recover credit
card numbers or passwords inside a ciphertext

- “Chosen Plaintext Attack” against ECB can decrypt any ciphertext.

ECB Security: It gets worse…

Chosen-Plaintext Attacks (CPA) against Encryption

EncK()

System
(e.g. webserver)

M

EncK(M’)

- Adversary provides inputs to system
- Obtains encryption of message that

depends on its inputs
- Sometimes M=M’

K

CPA Example: Encrypted Cookies

EncK()

Webserver
“username = 34lkjas”

C

- More later in web security module

K

M’ ← …341jkas;SECRET
C ← EncK(M’)

Assignment 1 preview: ECB
is totally insecure in this
setting. You will attack it and
recover SECRET.

Encrypting large files, Attempt #2: CTR

- CTR = “Counter Mode”
- Idea: Build a nonce-based stream cipher from AES

AES-CTRk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- For i=1…t:

- Ci ← Mi⊕AESk(IV+i)
- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . .

IV+2

AESK()

IV+t

IV

M1

C1

M2

Ct

Mt

Notes:
- No need to pad last block
- Must avoid reusing part of

stream

Encrypting large files, Attempt #2: CTR

- CTR = “Counter Mode”
- Idea: Build a nonce-based stream cipher from AES

AES-CTRk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- For i=1…t:

- Ci ← Mi⊕AESk(IV+i)
- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . .

IV+2

AESK()

IV+t

IV

M1

C2

M2

Ct

Mt

Notes:
- No need to pad last block
- Must avoid reusing part of

stream

When combined with
authentication, CTR is a
good cipher.

Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

Looks random

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

…

AES-1K()

IV

M1

AES-1K()

M2

C1 C2
Decryption

. . .

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

… When combined with
authentication, CBC is a
good cipher.

Warning: Padding creates
havoc with authentication.
Very difficult to implement.

- AES is unbroken
- AES-CTR is most robust construction for confidentiality
- AES-CTR/AES-CBC do not provide authenticity/integrity and should

almost never be used alone.

Blockcipher Summary

- Authenticity: Guarantee that adversary cannot change or insert
ciphertexts

- Achieved with MAC = “Message Authentication Code”

Next Up: Integrity and Authentication

Integrity: Preventing message modification

Encryption Integrity: An abstract setting

C←EncK(M)
C C’ M’←DecK(C’)  

or “ERROR”

Encryption satisfies integrity if it is infeasible for an
adversary to send a new C’ such that DecK(C’)≠ERROR.

AES-CTR does not satisfy integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

AES-CBC does not satisfy integrity

AES-1K()

IV

M1

AES-1K()

M2

C1 C2
AES-CBC Decryption: IV,C1,C2

IV,C1⊕X,C2

Decrypts to:

R,M2⊕X

Where R is some unpredictable block.

Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
“unpredictable” tag.

MACK()M

K

t

T←MACK(M)

M,T

K
K

T=MACK(M)?

MAC Security Goal: Unforgeability

T←MACK(M)
M,T M’,T’

“ACCEPT”  
or “ERROR”

MAC satisfies unforgeability if it is unfeasible for Adversary
to fool Bob into accepting M’ not previously sent by Alice.

T’=MACK(M’)?

MAC Security Goal: Unforgeability

T = 827851dc9cf0f92ddcdc552572ffd8bc

M = please pay ben 20 bucks

M’= please pay ben 21 bucks

M,T M’,T’

Note: No encryption on this slide.

T’= baeaf48a891de588ce588f8535ef58b6

Should be hard to predict T’ for any new M’.

MACs In Practice: Pretty much always use HMAC

- Don’t worry about how it works.
- More precisely: Use HMAC-SHA2. More on hashes and
MACs later.

- Other options: Poly1305-AES or CBC-MAC (the latter is tricky)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good cipher and a MAC.
- Ex: AES-CTR with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Building Authenticated Encryption

EncK1() MACK2()M
C

K1 K2

T

C T

EncryptK1,K2(M)

Output:  
(C,T)

MACK2()

K2

T’=T?

DecryptK1,K2(C,T)

Output:  
M’if T’=T  
⊥ if T’≠T

C
DecK1()

K1

C M’T’

- Summary: MAC the ciphertext, not the message

Chosen-Ciphertext Attacks (CCA) against Encryption

EncK()

System
(e.g. webserver)

C’

M’←DecK(C’)

- Adversary provides ciphertext
inputs to system

- Obtains info about decryptions of its
ciphertexts

K

DecK()

<info about M’>

- Integrity + Confidentiality = security against CCAs

CBC-Based Auth. Enc. Error: Padding and MACs

AESK1()

C1

AESK1()

IV C2

M2IV M1

Last block padded

MACK2()

K2

T

Final output: IV,C1,C2,T

EncryptK1,K2(M)

DecryptK1,K2(IV,C1,C2,T)
1. If tag T wrong:  

 Output REJECT
2. M’←CBC-DecryptK1(IV,C1,C2)
3. If padding format wrong:  

 Output PADDING_ERROR
4. Output M’

DecryptK1,K2(IV,C1,C2,T)
1. M’←CBC-DecryptK1(IV,C1,C2)
2. If padding format wrong:  

 Output PADDING_ERROR
3. If tag T wrong:  

 Output REJECT.
4. Output M’

 Broken

Padding Oracle Attacks

C’

DecryptK1,K2(IV,C1,C2,T)
1. M’←CBC-DecryptK1(IV,C1,C2)
2. If padding format wrong:  

 Output PADDING_ERROR
3. If tag T wrong:  

 Output REJECT.
4. Output M’

 Broken

REJECT or  
PADDING_ERROR

System
(e.g. webserver)

K

Allows decryption of arbitrary  
ciphertexts by adversary! 
… also by you, in Assignment 1.

Padding Oracle Attacks: It gets worse

C’

DecryptK1,K2(IV,C1,C2,T)
1. M’←CBC-DecryptK1(IV,C1,C2)
2. If padding format wrong:  

 Output PADDING_ERROR
3. If tag T wrong:  

 Output REJECT.
4. Output M’

 Broken

REJECT or  
PADDING_ERROR

System
(e.g. webserver)

K

Output REJECT.

REJECT in 10ms or  
REJECT in 15ms

Solutions:
1. Constant-time code (extremely difficult).
2. Use un-padded encryption like CTR.

Output REJECT lines will take  
different times to reach:

Attack still possible.

The End

