Public-Key Encryption,
Key Exchange,
Digital Signatures

CMSC 23200/33250, Autumn 2018, Lecture 7

David Cash

University of Chicago

Plan

1. Security of RSA
2. Key Exchange, Diffie-Hellman

3. Begin digital signatures

Assignment 1 is Due Wednesday

1. 1 will hold office hours Tomorrow (Tuesday), 2:30pm-4:30pm.

2. Thanks to everyone who reported server error bugs. | will responad
to piazza posts this afternoon.

3. Please ping me on piazza if any more bugs comes up.

RSA “Trapdoor Function”
PK=(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Enc((NV,e), M) = M mod N

Messages and ciphertexts
are in Z*

Dec((N,d),C) = C*mod N i

Setting up RSA:
- Pick two large random primes p,qg
- Pick e and then find d using p and g
- Usually e = 3 or e = 65537 = Ob10000000000000001

RSA “Trapdoor Function”

Easy given IV, e, x

Y
Hard given IV, e, y
Fasy given N, d, y

= x*mod N

Finding “e-th roots modulo N” Is hard.
Contrast is usual arithmetic, where finding roots is easy.

Better Padding: RSA-OAEP

RSA-OAEP [Bellare and Rogaway, ‘94|
orevents padding-oracle attacks with
petter padding using a hash function.

» n-k0-k1 . K1 - lee KO >

—— random bytes
@ i functions based on
w hash functions

Y .
Uses “Feistel Network” (1)
Y
. kO - KO

(Then apply RSA trapdoor function.)

Security of RSA Trapdoor Function Against Inversion

Inverting RSA Trapdoor Function Given N, e, y find x such that xe=y mod N
It we know d... Compute x = yd mod N
If we know @ (N)... Computed = e-1 mod @ (N)
If we know p, g... Compute @ (N)=(p-1) (g-1)
T Learning p and g from N is
But if we only know N... called the factoring problem.

- In principle one may invert RSA without factoring N, but it is the
only approach known.

Naive Factoring Algorithm

- Given input N=901, what are p,g”

NaiveFactor (N) :

l. For i=2..sqrt(N):
If i divides N:
Output p=i, g=N/1i

- Runtime is sgrt (N) <N
- But sgrt (N) is still huge (e.g. sqrt (22048)=21024)

Factoring Algorithms

- If we can factor N, we can find d and break any version of RSA.

Algorithm Time to Factor N

Naive: Try dividing by 1,2,3,... O(N~) = O(e> "))

O(e°)
¢ = (In N)V*(In1n N)?

O(e®)

Number Field Sieve ¢ = 1.9(In N)1/3(ln In N)2/3

- Total break requires ¢ = O(Inln N)

Factoring Records

- Challenges posted publicly by RSA Laboratories

Bit-length of N Year

400 1993
e e
 ss | awe
"""""""""""""""""""""""" e | w00

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.
- 512-bit N defeats naive factoring

Bad Randomness, Bad Primes, Bad Security

Nadia Heninger'*

Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices

Zakir Durumeric**

T University of California, San Diego

nadiah @cs.ucsd.edu

Eric Wustrow* J. Alex Halderman*

*The University of Michigan
{zakir, ewust, jhalderm } @umich.edu

- Gathered moduli N from 10 million hosts (used in TLS and SSH)

- Factored =1% of all N... how?

- Many pairs of moduli shared exactly one prime factor
- Find it fast using: gcd(N+,N2) = p

- Bad randomness for entire
execution is actually better

- Can define g

H(pP)

KeyGen () :

O & LD -

. Pick p €—— Might not be random at startup
. Pick g €— Slightly later, might be random

. Pick e

. Compute d
. Output (N,e) and (N,d)

Public-Key Encryption in Practice: Hybrid Encryption

- RSA runs reasonably fast but is orders of magnitude slower than
symmetric encryption with AES.
- My laptop...
- Can encrypt 800 MB per second using AES-CBC
- Can only evaluate RSA 1000 times per second

Solution: Use public-key encryption to send a 16-byte key K for
AES. Then encrypt rest of traffic using authenticated encryption.

- Called “hybrid encryption”

Key Exchange and Hybrid Encryption

(Kg, Enc, Dec) Is a public-key encryption scheme.

Goal: Establish secret key K to use with Authenticated Encryption.

Maybe be long-term key or
‘ephemeral” key pair, used

v j
PK,SK «— Kg

only once.

Pick random
AES key K PK

C = Enc(PK,f)

K is the K+<Dec(SK,C)
l message i
K

K

Key Exchange and Hybrid Encryption

Key Exchange

S ———————————_—

AES-GCM (K, M)
— e

AES-GCM (K, Mz)
_—m-—m———
AES-GCM(K,Ms)
-—

- After up-front cost, bulk encryption is very cheap
- TLS/SSH Terminology:
- “Handshake”™ = key exchange
- "Record protocol™ = symmetric encryption phase

An alternative approach to key exchange

- They modulus N for RSA is relatively large
- Mostly important because it slows down encryption/decryption

- Now: A totally different, faster approach based on ditferent math

- Invented in 1970s, but new ideas have recently made it the
standard choice

- Strictly speaking, not public-key encryption, but can adapted
into it if needed

The Setting: Discrete Logarithm Problem

Discrete Logarithm Problem:
Input: Prime p, integers g, X.
Qutput: integer r such that gr = X mod p.

- Different from factoring: Only one prime.

- Contrast with logarithms with real numbers, which are easy to
compute. Discrete logarithms appear to be hard to compute

- Largest solved instances: 768-bit prime p (2016)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime p (1024 bit usually)
Number g € Z;f (usually 2)

(p, &)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):

Prime p (1024 bit usually)

K
Number g € Zp (usually 2)

etwork Working Group
equest for Comments: 5114
ategory: Informational

Status of This Memo

This memo provides information for
not specify an Internet standard o
memo is unlimited.

Abstract

This document describes eight Diff
in conjunction with IETF protocols
communications. The groups allow
with a variety of security protoco
(SSH), Transport Layer Security (T
(IKE).

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
C2007CB8
83655D23
670C354E
E39E772C
DE2BCBF6

The generator is: 2.

15728E5A

(p, &)

Additional Diffie-Hellman Groups for Use with IETF Standards
2048-bit MODP Group

This group is assigned id 14.

Its hexadecimal value is:

FFFFFFFF
8A67CC74
CD3A431B
625E7EC6
5A899FA5
Al163BF05
DCA3ADY96
4ABC9804
180E8603
95581718
8AACAA68

M. Lepinski
S. Kent
BBN Technologies
January 2008

C90FDAA2
020BBEA6
302B0OA6D
F44C42E9
AE9F2411
98DA4836
1C62F356
F1746C08
9B2783A2
3995497C
FFFFFFFF

2168C234
3B139B22
F25F1437
A637ED6B
7C4B1FE6
1C55D39A
208552BB
CAl8217C
ECO07A28F
EA956AES
FFFFFFFF

C4C6628B
514A0879
4FE1356D
OBFF5CB6
49286651
69163FAS8
9ED52907
32905E46
B5C55DF0
15D22618

This prime is: 272048 - 271984 - 1 + 2764 * { [2°1918 pi] + 124476 }

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE45B3D
FD24CF5F
7096966D
2E36CE3B
6F4C52C9
98FA0510

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime p (1024 bit usually)
Number g € Z;f (usually 2)

(p, &)

Pick 7 € {1,...,p — 1}

Pick ry € {1,...,p — 1} X, < g’» mod p
B

X, < g'"mod p

K(_X;A mod p K(—XXB mod p

Correctness: X;A = (g'B)'a = g"4’B = (g'1)’s = X;{B mod p

Security of Diffie-Hellman

rs €11,...,p—1}
X, < g'"mod p

Pick r € {1,...,p— 1}
X < g'*mod p

XA
———————————————————————
XB
K < X’* mod p I Knows: p,g. Xy, Xz K < X;* mod p

“ Compute K 7

Best attack known: Compute discrete log of X, Xp

Key Exchange in the Future: Elliptic Curve Diffie-Hellman

- Diffie-Hellman works in any algebraic setting called a “finite
cyclic group”

- Instead of multiplication modulo a prime, other settings have
been suggested called “elliptic curve groups over finite tields”

- Advantage: Bandwidth and computation

- 256 bit vs 2048-bit messages.

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Dittie-Hellman (either mod a prime or in an
elliptic curve) are unbroken and run fine in TLS/SSH/etc.

- Elliptic-Curve Diffie-Hellman is likely to be preferred choice
going forward.

Huge quantum computers will break:
- RSA (any padding)
- Diffie-Hellman (any finite cyclic group)

- First gen quantum computers will be far from this large

- "Post-quantum™ crypto = crypto not known to be broken by
guantum computers (i.e. not RSA or DH)

- On-going research on post-quantum cryptography from hard
problems on lattices, with first beta deployments in recent years

Shor’s algorithm, 1994

Peter Shor

Key Exchange with a Person-in-the-Middle

Adversary may silently sit between parties and modity messages.

Parties agree on different keys, both known to adversary...

Key Exchange with a Person-in-the-Middle

AES-GCM(K,M;) \) AES-GCM(K' ,M;)
—_— —_—

AES-GCM (K, M) AES-GCM (K’ ,M;)

Connection is totally transparent to adversary,.
Translation is invisible to parties.

® © ® privacyerror X +
& > C O A NotSecure | hitps://md5.badssl.com * ® o6 008 @

Your connection is not private

Attackers might be trying to steal your information from md5.badssl.com (for example, passwords,
messages, or credit cards). Learn more
NET::ERR_CERT_AUTHORITY_INVALID

[:] Help improve Safe Browsing by sending some system information and page content to Google. Privacy policy

ADVANCED BACK TO SAFETY

Next up: Stopping the Person-in-the-Middle

- Public-Key Infrastructure (PKI)
- Digital Signatures
- Certificates and chains of trust

Public Keys on the Internet

- Anyone can set up a server and generate their own keys.
- When you connect, how do you know you got the correct key?

(PKl ’ SKl)
(PKs3, SK3)

(PK?,SKz) (PK4, SKy)

google.com
facebook.com

amazon.com .
twitter.com

Naive Solution

- Just distribute all the keys ahead of time, and store them locally!

keys.txt

google.com:PK; - List will be huge
amazon.com: PKy

facebook . com: PKa - List will need to be?updated often
twitter.coms:PKa - Who sends the list -
- Can adversaries tamper with list?

Problems:

Distributing keys via “Transferring Trust”

- We will “transfer trust” from one key to another.

It A knows that PKg belongs to a trusted (in the eyes of A) entity
B, and B knows that PKc¢ belongs to a trusted (in the eyes of B)
entity C, then A should also trust C and PKc.

- Initial “root” of trust established out-of-band via physical
interaction.

Distributing keys via “Transferring Trust”

(PK1,SK1)

e direCt trust (PK*, SK*)

--------- P indirect trust
(cryptographically
ensured)

(PK2, SKy)

amazon.com

twitter.com

Crypto Tool: Digital Signatures

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kqg, takes no input and outputs a
(random) public-verification-key/secret-signing key pair (VK, SK)

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” o+—Sign(SK,M)

- Verification algorithm Verify, takes input the public key VK, a
message M, a signature g, and outputs ACCEPT/REJECT
Verify(VK,M,O0)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

VK, SK +— Kg |

o+—Sign(SK,M) o,M oM Verify(VK,O' ,M’)?
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows VK) to fool Bob into accepting M’ not
previously sent by Alice.

Industry Standard: RSA Signatures
VK =(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Sign((N, d),M) = HM)*mod N Messages & sigs
e
Verify((N, e), M, 6) : 6° = HM)mod N? “N

H is cryptographic hash function mapping strings to Z;‘\j

Totally broken if H 1is
not used, or weak H 1s used.

f\% Broken @\

The Enad

