
David Cash

Public-Key Encryption,
Key Exchange, 

Digital Signatures
CMSC 23200/33250, Autumn 2018, Lecture 7

University of Chicago

Plan

1. Security of RSA

2. Key Exchange, Diffie-Hellman

3. Begin digital signatures

Assignment 1 is Due Wednesday

1. I will hold office hours Tomorrow (Tuesday), 2:30pm-4:30pm.

2. Thanks to everyone who reported server error bugs. I will respond
to piazza posts this afternoon.

3. Please ping me on piazza if any more bugs comes up.

RSA “Trapdoor Function”
PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Enc((N, e), M) = Me mod N

Dec((N, d), C) = Cd mod N
Messages and ciphertexts 
are in ℤ*N

Setting up RSA:
- Pick two large random primes p,q
- Pick e and then find d using p and q

- Usually e = 3 or e = 65537 = 0b10000000000000001

RSA “Trapdoor Function”

x mod N y = xe mod N

Easy given N, e, x

Hard given N, e, y

Finding “e-th roots modulo N” is hard.
Contrast is usual arithmetic, where finding roots is easy.

Easy given N, d, y

Better Padding: RSA-OAEP

RSA-OAEP [Bellare and Rogaway, ‘94]
prevents padding-oracle attacks with
better padding using a hash function.

(Then apply RSA trapdoor function.)

random bytes

functions based on  
hash functions

Uses “Feistel Network” (!)

Security of RSA Trapdoor Function Against Inversion
Inverting RSA Trapdoor Function Given N,e,y find x such that xe=y mod N

If we know d… Compute x = yd mod N

If we know φ(N)… Compute d = e-1 mod φ(N)

If we know p,q… Compute φ(N)=(p-1)(q-1)

But if we only know N…
Learning p and q from N is 
called the factoring problem.

- In principle one may invert RSA without factoring N, but it is the
only approach known.

Naive Factoring Algorithm

- Given input N=901, what are p,q?

NaiveFactor(N):

1. For i=2…sqrt(N):
If i divides N:
Output p=i, q=N/i

- Runtime is sqrt(N)≪N
- But sqrt(N) is still huge (e.g. sqrt(22048)=21024)

Factoring Algorithms

- If we can factor N, we can find d and break any version of RSA.

Algorithm Time to Factor N

Naive: Try dividing by 1,2,3,…

Quadratic Sieve

Number Field Sieve

O(N.5) = O(e.5 ln(N))

O(ec)

O(ec)

c = (ln N)1/2(ln ln N)1/2

c = 1.9(ln N)1/3(ln ln N)2/3

c = O(ln ln N)- Total break requires

Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

Factoring Records

- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.

- 512-bit N defeats naive factoring

Bad Randomness, Bad Primes, Bad Security

- Gathered moduli N from 10 million hosts (used in TLS and SSH)
- Factored ≈1% of all N… how?
- Many pairs of moduli shared exactly one prime factor

- Find it fast using: gcd(N1,N2) = p
- … why?

KeyGen():

1. Pick p
2. Pick q
3. Pick e
4. Compute d
5. Output (N,e) and (N,d)

Might not be random at startup
Slightly later, might be random

- Bad randomness for entire
execution is actually better
- Can define q = H(p)

Public-Key Encryption in Practice: Hybrid Encryption

- RSA runs reasonably fast but is orders of magnitude slower than
symmetric encryption with AES.
- My laptop…

- Can encrypt 800 MB per second using AES-CBC
- Can only evaluate RSA 1000 times per second

Solution: Use public-key encryption to send a 16-byte key K for
AES. Then encrypt rest of traffic using authenticated encryption.

- Called “hybrid encryption”

Key Exchange and Hybrid Encryption

Goal: Establish secret key K to use with Authenticated Encryption.

KgPK,SK

PK

(Kg, Enc, Dec) is a public-key encryption scheme.

Pick random 
AES key K

C = Enc(PK,K)

K is the 
message

K K

K←Dec(SK,C)

Maybe be long-term key or  
“ephemeral” key pair, used
only once.

Key Exchange and Hybrid Encryption

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

- After up-front cost, bulk encryption is very cheap
- TLS/SSH Terminology:

- “Handshake” = key exchange
- “Record protocol” = symmetric encryption phase

An alternative approach to key exchange

- They modulus N for RSA is relatively large
- Mostly important because it slows down encryption/decryption  

- Now: A totally different, faster approach based on different math
- Invented in 1970s, but new ideas have recently made it the

standard choice
- Strictly speaking, not public-key encryption, but can adapted

into it if needed

The Setting: Discrete Logarithm Problem

Discrete Logarithm Problem:
Input: Prime p, integers g, X.
Output: integer r such that gr = X mod p.

- Different from factoring: Only one prime.
- Contrast with logarithms with real numbers, which are easy to

compute. Discrete logarithms appear to be hard to compute
- Largest solved instances: 768-bit prime p (2016)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g ∈ ℤ*p

(p, g)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g ∈ ℤ*p

(p, g)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g ∈ ℤ*p

(p, g)

rA ∈ {1,…, p − 1}Pick
XA ← grA mod p XA

XB

rB ∈ {1,…, p − 1}Pick
XB ← grB mod p

K ← XrA
B mod p K ← XrB

A mod p

XrA
B = (grB)rA = grArB = (grA)rB = XrB

A mod pCorrectness:

Security of Diffie-Hellman
rA ∈ {1,…, p − 1}
XA ← grA mod p XA

XB

rB ∈ {1,…, p − 1}Pick
XB ← grB mod p

K ← XrA
B mod p K ← XrB

A mod pKnows: p, g, XA, XB

Compute ?K

Best attack known: Compute discrete log of XA, XB

Key Exchange in the Future: Elliptic Curve Diffie-Hellman

- Diffie-Hellman works in any algebraic setting called a “finite
cyclic group”

- Instead of multiplication modulo a prime, other settings have
been suggested called “elliptic curve groups over finite fields”

- Advantage: Bandwidth and computation
- 256 bit vs 2048-bit messages.

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Diffie-Hellman (either mod a prime or in an
elliptic curve) are unbroken and run fine in TLS/SSH/etc.

- Elliptic-Curve Diffie-Hellman is likely to be preferred choice
going forward.

Huge quantum computers will break:
- RSA (any padding)
- Diffie-Hellman (any finite cyclic group)

- First gen quantum computers will be far from this large
- “Post-quantum” crypto = crypto not known to be broken by

quantum computers (i.e. not RSA or DH)
- On-going research on post-quantum cryptography from hard

problems on lattices, with first beta deployments in recent years

Shor’s algorithm, 1994

Peter Shor

Key Exchange with a Person-in-the-Middle

PK

C C’

PK’

K K’ K’K

Adversary may silently sit between parties and modify messages.

Parties agree on different keys, both known to adversary…

Key Exchange with a Person-in-the-Middle

AES-GCM(K,M1)

AES-GCM(K’,M2)

K K’

AES-GCM(K’,M1)

AES-GCM(K,M2)

Connection is totally transparent to adversary.
Translation is invisible to parties.

Next up: Stopping the Person-in-the-Middle

- Public-Key Infrastructure (PKI)
- Digital Signatures
- Certificates and chains of trust

Public Keys on the Internet

google.com

amazon.com

facebook.com

twitter.com

(PK1,SK1)

(PK2,SK2)

(PK3,SK3)

(PK4,SK4)

- Anyone can set up a server and generate their own keys.
- When you connect, how do you know you got the correct key?

Naive Solution

keys.txt
google.com:PK1
amazon.com:PK2
facebook.com:PK3
twitter.com:PK4
…

- Just distribute all the keys ahead of time, and store them locally!

Problems:
- List will be huge
- List will need to be updated often
- Who sends the list?
- Can adversaries tamper with list?

Distributing keys via “Transferring Trust”

- We will “transfer trust” from one key to another.

If A knows that PKB belongs to a trusted (in the eyes of A) entity
B, and B knows that PKC belongs to a trusted (in the eyes of B)
entity C, then A should also trust C and PKC.

- Initial “root” of trust established out-of-band via physical
interaction.

Distributing keys via “Transferring Trust”

google.com

amazon.com

twitter.com

(PK1,SK1)

(PK2,SK2)

(PK3,SK3)

verisign.com

(PK*,SK*)

trusts
 PK1

trusts PK2

trusts PK
3

tr
us
ts
 P
K*

direct trust
indirect trust 
(cryptographically 
ensured)

tru
sts

 PK
1

trusts PK2

trusts PK3

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify  
 
- Key generation algorithm Kg, takes no input and outputs a

(random) public-verification-key/secret-signing key pair (VK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” σ←Sign(SK,M)  

- Verification algorithm Verify, takes input the public key VK, a
message M, a signature σ, and outputs ACCEPT/REJECT

 Verify(VK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures

Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M) σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows VK) to fool Bob into accepting M’ not
previously sent by Alice.

Verify(VK,σ’,M’)?

KgVK,SK

VK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = H(M)d mod N
Verify((N, e), M, σ) : σe = H(M) mod N?

Messages & sigs 
are in ℤ*N

Industry Standard: RSA Signatures

H is cryptographic hash function mapping strings to ℤ*N

Totally broken if H is  
not used, or weak H is used.

 Broken

The End

