Digital Signatures CMSC 23200/33250, Autumn 2018, Lecture 8

David Cash

University of Chicago

Plan

- 1. Digital Signatures Recall
- 2. Plain RSA Signatures and their many weaknesses
- 3. A Strengthing: PKCS#1 v1.5 RSA Signature Padding
- 4. An implementation error and its grave consequences

Assignment 1 is Due Tonight

Error in Problem 3 Hint:

- Technique outlined there omits an XOR with previous block.

If you want to test your code:

- Run attack with cnet id=davidcash and cnet id=ravenben
- Flag sizes vary in problems 2 and 3; Your attack should be robust to this
- (Especially on 2, where extra tricks are required for long flags.)

Crypto Tool: Digital Signatures

Definition. A digital signature scheme consists of three algorithms **Kg**, **Sign**, and **Verify**

- Key generation algorithm **Kg**, takes no input and outputs a (random) public-verification-key/secret-signing key pair (VK, SK)
- Signing algorithm **Sign**, takes input the secret key SK and a message M, outputs "signature" σ←Sign(SK,M)
- Verification algorithm **verify**, takes input the public key VK, a message M, a signature σ , and outputs ACCEPT /REJECT Verify(VK,M,σ)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

Scheme satisfies **unforgeability** if it is unfeasible for Adversary (who knows VK) to fool Bob into accepting M' not previously sent by Alice.

"Plain" RSA with No Encoding **Broken**

 $VK = (N, e)$ *SK* = (N, d) where $N = pq$, $ed = 1 \text{ mod } \phi(N)$

 $Sign((N, d), M) = M^d \text{ mod } N$ $Verify((N, e), M, \sigma) : \sigma^e = M \text{ mod } N?$ Messages & sigs are in \mathbb{Z}_N^* *N*

 $e = 3$ is common for fast verification; Assume $e = 3$ below.

"Plain" RSA Weaknesses **Broken**

Assume e=3.

 $Sign((N, d), M) = M^d \mod N$ Verify $((N, 3), M, \sigma) : \sigma^3 = M \mod N$?

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

M=1 weakness: If M'=1 then it is easy to forge. Take σ'=1:

 $(\sigma'$ ³)=1³=1=M' mod N

Cube-M weakness: If M' is a *perfect cube* then it is easy to forge. Just take $\sigma' = (M')^{1/3}$; i.e. the usual cube root of M':

Example: To forge on $M' = 8$, which is a perfect cube, set $\sigma' = 2$.

$$
(\sigma')
$$
 $3=23=8=M'$ mod N

(Intuition: If cubing does not "wrap modulo N", then it is easy to un-do.)

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

Malleability weakness: If σ is a valid signature for M, then it is easy to forge a signature on 8M mod N.

Given (M,σ) , compute forgery (M',σ') as

 $M' = (8*N \mod N)$, and $\sigma' = (2*\sigma \mod N)$

Then Verify((N,3),M',σ') checks:

 $(\sigma')^{3} = (2 * \sigma \mod N)^{3} = (2^{3} * \sigma^{3} \mod N) = (2^{3} * M \mod N) = 8M \mod N$

 σ^3 =M mod N b/c σ is valid sig. on M

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

Malleability weakness: If σ is a valid signature for M, then it is easy to forge a signature on 8M mod N.

General form of *malleability* **weakness:** If σ is a valid signature for M, then it is easy to forge a signature on $M' = (x * M \mod N)$ for any perfect cube x.

 $M' = x*M \mod N$, and $\sigma' = (x^{1/3} * \sigma \mod N)$

Then $Verify((N,3),M',\sigma')$ checks:

 $(\sigma')^{3}=(x^{1/3}*\sigma \mod N)^{3} = (x*\sigma^{3}) \mod N = (x*\mathbb{M} \mod N) = (M' \mod N)^{3}$

 σ^3 =M mod N b/c σ is valid sig. on M

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

Combining signatures weakness: If σ_1 is a valid signature for M_1 , and σ_2 is a valid signature for $M_2...$

... then it is easy to compute signature σ' on $M' = (M_1 * M_2 \mod N)$

 $M' = (M_1 * M_2 \mod N)$ and $\sigma' = (\sigma_1 * \sigma_2 \mod N)$

Then Verify((N,3),M',σ') checks:

 $(\sigma')^{3}=(\sigma_1*\sigma_2 \mod N)^3 = (\sigma_1^{3}*\sigma_2^{3} \mod N) = (M_1*M_2 \mod N) = (M' \mod N)$

b/c σ_1 , σ_2 are valid sigs

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

Backwards signing weakness: Generate *some* valid signature by picking σ' first, and then defining $M' = (σ'$ ³ mod N)

Then Verify((N,3),M',σ') checks:

$$
(\sigma')^{3} = (M' \mod N)
$$

To forge a signature on message M' : Find number σ' such that $(\sigma')^{3}=M'$ mod N

Summary:

- Plain RSA Signatures allow several types of forgeries
- It was sometimes argued that these forgeries aren't important: If M is english text, then M' is unlikely to be meaningful for these attacks
- But often they are damaging anyway

RSA Signatures with Encoding

 $VK = (N, e)$ *SK* = (N, d) where $N = pq$, $ed = 1 \text{ mod } \phi(N)$

Sign
$$
(N, d)
$$
, M) = encode $(M)^d$ mod N
Here in \mathbb{Z}_N^*
Verify $((N, e), M, \sigma) : \sigma^e$ = encode (M) mod N ?

encodemaps bit strings to numbers in \mathbb{Z}_N^* *N*

Encoding needs to address:

- Perfect cubes
- Malleability
- Backwards signing

Encoding must be chosen with extreme care. **Broken**

RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 e*ncryption* padding. This is *signature* padding. It is different.

Sign((N,d),M):

- 1. digest←H(M) // m bytes long
- 2. pad←FF||FF||…||FF// n-m-3 'FF' bytes
- 3. X←00||01||pad||00||digest
- 4. Output $\sigma = X^d$ mod N

Verify((N,3),M,σ):

- 1. $X \leftarrow (\sigma^3 \mod N)$
- 2. Parse X➞aa||bb||Y||cc||digest
- 3. If aa≠00 or bb≠01 or cc≠00 or Y≠(FF)n-m-3 or digest≠H(M): Output REJECT 4. Else: Output ACCEPT

Encoding needs to address:

- Perfect cubes -
- Malleability —
- Backwards signing _

 \rightarrow The high-order bits + digest means X is large and random-looking, rarely a cube.

Stopped by hash, ex: $H(2*M) \neq 2*H(M)$

Stopped by hash: given digest, hard to find M such that $H(M)$ =digest.

RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 e*ncryption* padding. This is *signature* padding. It is different.


```
4. Output \sigma = X^d mod N
```
 or Y≠(FF)n-m-3 or digest≠H(M): Output REJECT 4. Else: Output ACCEPT

Introduces new weakness:

- Hash collision attacks: If $H(M) = H(M')$, then ...

 $Sign((N,d),M) = Sign((N,d),M')$

- i.e., can reuse a signature for M as a signature for M'

Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly
- Enables forging of signatures on *arbitrary* messages

Real-world attacks against:

- OpenSSL (2006)
- Apple OSX (2006)
- Apache (2006)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)

```
…
(too many to list)
```
Buggy Verification in PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):

1. $X \leftarrow (\sigma^3 \mod N)$ 2. Parse X➞aa||bb||rest 3. If aa≠00 or bb≠01: Output REJECT 4. Parse rest=(FF)p||00||digest||…, where p is any number 5. If digest≠H(M): Output REJECT 6. Else: Output ACCEPT

$Verify((N,3),M,0):$

```
1. X \leftarrow (\sigma^3 \mod N)2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00
      or Y≠(FF)n-m-3 or digest≠H(M):
       Output REJECT
4. Else: Output ACCEPT
```
 Broken

Checks if rest starts with any number of FF bytes followed by a 00 byte.

If so, it takes the next m bytes as digest.

Correct: X = 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST> Buggy: X = 00 01 FF 00 <DIGEST> <IGNORED BYTES> One or more FF bytes

Attacking Buggy Verification

Freedom to pick \le JUNK> means we can take any σ' such that:

00 01 FF 00 H(M') 00 00 \leq (σ')³ \leq 00 01 FF 00 H(M') FF FF

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube attack.

Easy! (exercise)

Steps in Attack

- 1. Pick M you want to forge on
- 2. Compute lower and upper bounds (numbers), using H(M).
- 3. Find a perfect cube x within allowed range
- 4. Output cube root of x as forged signature σ .

Attack Summary

- When padding check allows variable number of FF bytes, forging is easy
	- Only requires a simple search for a perfect cube in a given range
- *- Why did so many make this error?*
	- I don't know
	- My guesses:
		- Plugging in libraries for padding removal without context
		- Traditional unit testing is hard to apply to crypto.
		- The details omitted in my description of the padding make parsing much harder. (Actual version includes in X an ASN.1 identifier of hash function, which is complicated in full generality.)
- Attack defeated by using large e=65537

Lesson with Implementing Signatures

- Verify should simply re-run signing and check if same signature comes out
- Not strictly possible if Sign is randomized.

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer. $H:$ Hash fcn with m-byte output \leftarrow Ex: SHA-256, m=32 $k = \text{ceil}((n-1) / m)$

Sign((N,d),M):

- 1. X←00||H(1||M)||H(2||M)||…||H(k||M)
- 2. Output $\sigma = X^d$ mod N

Verify((N,e),M,σ):

```
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
```
2. Check if $\sigma^e = X \mod N$

Bonus: Can *prove* security, in a strong sense.

Other RSA Padding Schemes: PSS

- Somewhat complicated
- *- Randomized* signing

RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly
- Full-Domain Hash and PSS should be preferred
- Don't roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but ripe for implementation errors

Hackers obtain PS3 private cryptography key due to epic programming fail? (update)

The End