Digital Signatures CMSC 23200/33250, Autumn 2018, Lecture 8

David Cash

University of Chicago

Plan

- 1. Digital Signatures Recall
- 2. Plain RSA Signatures and their many weaknesses
- 3. A Strengthing: PKCS#1 v1.5 RSA Signature Padding
- 4. An implementation error and its grave consequences

Assignment 1 is Due Tonight

Error in Problem 3 Hint:

- Technique outlined there omits an XOR with previous block.

If you want to test your code:

- Run attack with cnet_id=davidcash and cnet_id=ravenben
- Flag sizes vary in problems 2 and 3; Your attack should be robust to this
- (Especially on 2, where extra tricks are required for long flags.)

Crypto Tool: Digital Signatures

Definition. A <u>digital signature scheme</u> consists of three algorithms **Kg**, **Sign**, and **Verify**

- Key generation algorithm Kg, takes no input and outputs a (random) public-verification-key/secret-signing key pair (VK,SK)
- <u>Signing algorithm **Sign**</u>, takes input the secret key SK and a message M, outputs "signature" σ←Sign(SK,M)
- Verification algorithm Verify, takes input the public key VK, a message M, a signature σ, and outputs ACCEPT/REJECT
 Verify(VK,M,σ)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

Scheme satisfies **unforgeability** if it is unfeasible for Adversary (who knows VK) to fool Bob into accepting M' not previously sent by Alice.

"Plain" RSA with No Encoding

VK = (N, e) SK = (N, d) where N = pq, $ed = 1 \mod \phi(N)$

Sign((N, d), M) = $M^d \mod N$ Verify((N, e), M, σ) : $\sigma^e = M \mod N$? Messages & sigs are in \mathbb{Z}_N^*

e = 3 is common for fast verification; Assume e=3 below.

"Plain" RSA Weaknesses

Assume e=3.

Sign $((N, d), M) = M^d \mod N$ Verify $((N,3), M, \sigma) : \sigma^3 = M \mod N$?

To forge a signature on message M': Find number σ' such that $(\sigma')^3=M' \mod N$

<u>M=1 weakness</u>: If M'=1 then it is easy to forge. Take $\sigma'=1$:

 $(\sigma'^{3})=1^{3}=1=M' \mod N$

<u>Cube-M weakness</u>: If M' is a *perfect cube* then it is easy to forge. Just take $\sigma' = (M')^{1/3}$; i.e. the usual cube root of M':

<u>Example</u>: To forge on M' = 8, which is a perfect cube, set $\sigma' = 2$.

 $(\sigma')^{3}=2^{3}=8=M' \mod N$

(Intuition: If cubing does not "wrap modulo \mathbb{N} ", then it is easy to un-do.)

To forge a signature on message M': Find number σ' such that $(\sigma')^3=M' \mod N$

<u>Malleability weakness</u>: If σ is a valid signature for M, then it is easy to forge a signature on 8M mod N.

Given (M,σ) , compute forgery (M',σ') as

M'= (8*M mod N), and $\sigma' = (2*\sigma \mod N)$

Then Verify((N,3),M', σ ') checks:

 $(\sigma')^3 = (2*\sigma \mod N)^3 = (2^3*\sigma^3 \mod N) = (2^3*M \mod N) = 8M \mod N$

 $\sigma^3 = M \mod N \text{ b/c } \sigma$ is valid sig. on M

<u>To forge a signature on message M'</u>: Find number σ' such that $(\sigma')^3=M' \mod N$

<u>Malleability weakness</u>: If σ is a valid signature for M, then it is easy to forge a signature on 8M mod N.

<u>General form of malleability weakness</u>: If σ is a valid signature for M, then it is easy to forge a signature on $M' = (x * M \mod N)$ for any perfect cube x.

 $M' = x * M \mod N$, and $\sigma' = (x^{1/3} * \sigma \mod N)$

Then Verify((N,3),M',σ') checks:

 $(\sigma')^3 = (x^{1/3} * \sigma \mod N)^3 = (x * \sigma^3 \mod N) = (x * M \mod N) = (M' \mod N)$

 $\sigma^3=M \mod N \text{ b/c } \sigma$ is valid sig. on M

<u>To forge a signature on message M'</u>: Find number σ' such that $(\sigma')^3=M' \mod N$

Combining signatures weakness: If σ_1 is a valid signature for M_1 , and σ_2 is a valid signature for M_2 ...

... then it is easy to compute signature σ' on $M' = (M_1 * M_2 \mod N)$

 $M' = (M_1 * M_2 \mod N)$ and $\sigma' = (\sigma_1 * \sigma_2 \mod N)$

Then Verify((N,3),M',σ') checks:

 $(\sigma')^{3}=(\sigma_{1}*\sigma_{2} \mod N)^{3}=(\sigma_{1}^{3}*\sigma_{2}^{3} \mod N)=(M_{1}*M_{2} \mod N)=(M' \mod N)$

b/c σ_1 , σ_2 are valid sigs

<u>To forge a signature on message M'</u>: Find number σ' such that $(\sigma')^3=M' \mod N$

Backwards signing weakness: Generate some valid signature by picking σ' first, and then defining $M' = (\sigma'^3 \mod N)$

Then Verify((N,3),M',σ') checks:

$$(\sigma')^3 = (M' \mod N)$$

<u>To forge a signature on message M'</u>: Find number σ' such that $(\sigma')^3=M' \mod N$

<u>Summary:</u>

- Plain RSA Signatures allow several types of forgeries
- It was sometimes argued that these forgeries aren't important: If M is english text, then M' is unlikely to be meaningful for these attacks
- But often they are damaging anyway

RSA Signatures with Encoding

VK = (N, e) SK = (N, d) where N = pq, $ed = 1 \mod \phi(N)$

Sign((N, d), M) = encode(M)^d mod N

$$Messages \& sigs are in \mathbb{Z}_N^*$$

$$Verify((N, e), M, \sigma) : \sigma^e = encode(M) \mod N?$$

encode maps bit strings to numbers in \mathbb{Z}_N^*

Encoding needs to address:

- Perfect cubes
- Malleability
- Backwards signing

Encoding must be chosen with extreme care.

RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 encryption padding. This is <u>signature</u> padding. It is different.

Sign((N,d),M):

- 1. digest←H(M) // m bytes long
 2. pad←FF||FF||...||FF// n-m-3 'FF' bytes
- 3. X←00||01||pad||00||digest
- 4. Output σ = X^d mod N

Verify((N,3),M, σ):

- 1. $X \leftarrow (\sigma^3 \mod N)$
- 2. Parse $X \rightarrow aa | |bb| | Y | |cc| | digest$
- 3. If aa≠00 or bb≠01 or cc≠00
 or Y≠(FF)^{n-m-3} or digest≠H(M):
 Output REJECT
 4. Else: Output ACCEPT

Encoding needs to address:

- Perfect cubes ——
- Malleability _____
- Backwards signing _

The high-order bits + digest means X is large and random-looking, rarely a cube.

Stopped by hash, ex: H(2*M)≠2*H(M)

Stopped by hash: given digest, hard to find M such that H(M)=digest.

RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 encryption padding. This is <u>signature</u> padding. It is different.

Introduces new weakness:

- Hash collision attacks: If H(M) = H(M'), then ...

Sign((N,d),M) = Sign((N,d),M')

- i.e., can reuse a signature for ${\tt M}$ as a signature for ${\tt M}\,{\prime}$

Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly
- Enables forging of signatures on arbitrary messages

Real-world attacks against:

- OpenSSL (2006)
- Apple OSX (2006)
- Apache (2006)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)

```
(too many to list)
```

Buggy Verification in PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):

 X←(O³ mod N)
 Parse X→aa||bb||rest
 If aa≠00 or bb≠01: Output REJECT
 Parse rest=(FF)p||00||digest||..., where p is any number
 If digest≠H(M): Output REJECT
 Else: Output ACCEPT Verify((N,3),M, σ):

```
    X←(σ<sup>3</sup> mod N)
    Parse X→aa||bb||Y||cc||digest
    If aa≠00 or bb≠01 or cc≠00
        or Y≠(FF)<sup>n-m-3</sup> or digest≠H(M):
        Output REJECT
    Else: Output ACCEPT
```

Broken

Checks if **rest** starts with <u>any</u> <u>number</u> of **FF** bytes followed by a **00** byte.

If so, it takes the next m bytes as digest.

Correct: X = 00 01 FF 00 <DIGEST> Buggy: X = 00 01 FF 00 <DIGEST> <IGNORED BYTES> One or more FF bytes

Attacking Buggy Verification

Freedom to pick <JUNK> means we can take any σ' such that:

00 01 FF 00 H(M') 00 00 \leq (σ')³ \leq 00 01 FF 00 H(M') FF FF

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube attack.

Easy! (exercise)

Steps in Attack

- 1. Pick M you want to forge on
- 2. Compute lower and upper bounds (numbers), using H(M).
- 3. Find a perfect cube \mathbf{x} within allowed range
- 4. Output cube root of \mathbf{x} as forged signature $\boldsymbol{\sigma}$.

Attack Summary

- When padding check allows variable number of FF bytes, forging is easy
 - Only requires a simple search for a perfect cube in a given range
- Why did so many make this error?
 - I don't know
 - My guesses:
 - Plugging in libraries for padding removal without context
 - Traditional unit testing is hard to apply to crypto.
 - The details omitted in my description of the padding make parsing much harder. (Actual version includes in X an ASN.1 identifier of hash function, which is complicated in full generality.)
- Attack defeated by using large e=65537

Lesson with Implementing Signatures

- Verify should simply re-run signing and check if same signature comes out
- Not strictly possible if **Sign** is randomized.

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer. H: Hash fcn with m-byte output. Ex: SHA-256, m=32 k = ceil((n-1)/m)

Sign((N,d),M):

- 1. $X \leftarrow 00 | |H(1||M)| |H(2||M)| |...||H(k||M)$
- 2. Output σ = X^d mod N

Verify((N,e),M, σ):

```
1. X \leftarrow 00 | |H(1||M)| |H(2||M)| |...||H(k||M)
```

2. Check if $\sigma^e = x \mod N$

Bonus: Can *prove* security, in a strong sense.

Other RSA Padding Schemes: PSS

- Somewhat complicated
- Randomized signing

RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly
- Full-Domain Hash and PSS should be preferred
- Don't roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but ripe for implementation errors

Hackers obtain PS3 private cryptography key due to epic programming fail? (update)

The End