
David Cash

Digital Signatures 
CMSC 23200/33250, Autumn 2018, Lecture 8

University of Chicago



Plan

1. Digital Signatures Recall 

2. Plain RSA Signatures and their many weaknesses 

3. A Strengthing: PKCS#1 v1.5 RSA Signature Padding 

4. An implementation error and its grave consequences



Assignment 1 is Due Tonight

Error in Problem 3 Hint: 
- Technique outlined there omits an XOR with previous block.

If you want to test your code: 
- Run attack with cnet_id=davidcash and cnet_id=ravenben
- Flag sizes vary in problems 2 and 3; Your attack should be robust to this 
- (Especially on 2, where extra tricks are required for long flags.)



Definition. A digital signature scheme consists of three algorithms 
Kg, Sign, and Verify  
 
- Key generation algorithm Kg, takes no input and outputs a 

(random) public-verification-key/secret-signing key pair (VK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a 
message M, outputs “signature” σ←Sign(SK,M)  

- Verification algorithm Verify, takes input the public key VK, a 
message M, a signature σ, and outputs ACCEPT/REJECT 

 Verify(VK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures



Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for 
Adversary (who knows VK) to fool Bob into accepting M’ not 
previously sent by Alice.

Verify(VK,σ’,M’)?

KgVK,SK

M



VK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

Messages & sigs 
are in ℤ*N

“Plain” RSA with No Encoding  Broken

e = 3 is common for fast verification; Assume e=3 below.



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

“Plain” RSA Weaknesses  Broken

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.  
Just take  σ’=(M’)1/3:, i.e. the usual cube root of M’:

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

M=1 weakness: If M’=1 then it is easy to forge. Take σ’=1: 
                                          

Assume e=3.

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

(σ’3)=13=1=M’ mod N

Example: To forge on M’=8, which is a perfect cube, set σ’=2.
(σ’)3=23=8=M’ mod N



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Malleability weakness: If σ is a valid signature for M, then it is easy to forge 
a signature on 8M mod N.

Given (M,σ), compute forgery (M’,σ’) as

Then Verify((N,3),M’,σ’) checks: 

M’= (8*M mod N), and σ’=(2*σ mod N)

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8M mod N

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

σ3=M mod N b/c σ is valid sig. on M



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Malleability weakness: If σ is a valid signature for M, then it is easy to forge 
a signature on 8M mod N.

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

General form of malleability weakness: If σ is a valid signature for M, then 
it is easy to forge a signature on M’=(x*M mod N) for any perfect cube x.

M’= x*M mod N, and σ’=(x1/3*σ mod N)

Then Verify((N,3),M’,σ’) checks: 

(σ’)3=(x1/3*σ mod N)3 = (x*σ3 mod N) = (x*M mod N) = (M’ mod N)

σ3=M mod N b/c σ is valid sig. on M



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Combining signatures weakness: If σ1 is a valid signature for M1, and σ2 is 
a valid signature for M2…

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

… then it is easy to compute signature σ’ on M’=(M1*M2 mod N)

M’= (M1*M2 mod N) and σ’=(σ1*σ2 mod N)

Then Verify((N,3),M’,σ’) checks: 

(σ’)3=(σ1*σ2 mod N)3 = (σ13*σ23 mod N) = (M1*M2 mod N) =(M’ mod N)

b/c σ1, σ2 are valid sigs



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Backwards signing weakness: Generate some valid signature by picking 
σ’ first, and then defining M’=(σ’3 mod N)

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Then Verify((N,3),M’,σ’) checks: 

(σ’)3=(M’ mod N)



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Summary: 
- Plain RSA Signatures allow several types of forgeries 
- It was sometimes argued that these forgeries aren’t important: If M is english text, 

then M’ is unlikely to be meaningful for these attacks 
- But often they are damaging anyway



VK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

Messages & sigs 
are in ℤ*N

RSA Signatures with Encoding

encode maps bit strings to numbers inℤ*N

Encoding must be chosen  
with extreme care.

 Broken

Encoding needs to address: 
- Perfect cubes 
- Malleability 
- Backwards signing



RSA Signature Padding: PKCS #1 v1.5 (simplified)
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

N: n-byte long integer. 
H:  Hash fcn with m-byte output.

Encoding needs to address: 
- Perfect cubes 
- Malleability 
- Backwards signing

The high-order bits + digest means X is  
large  and random-looking, rarely a cube.

Ex: SHA-256, m=32

Stopped by hash, ex: H(2*M)≠2*H(M)

Stopped by hash: given digest, hard to find M  
such that H(M)=digest.

Sign((N,d),M):
1. digest←H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

  or Y≠(FF)n-m-3 or digest≠H(M):  
   Output REJECT

4. Else: Output ACCEPT



RSA Signature Padding: PKCS #1 v1.5 (simplified)
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

N: n-byte long integer. 
H:  Hash fcn with m-byte output.

Introduces new weakness: 
- Hash collision attacks: If H(M) = H(M’), then … 

Sign((N,d),M) = Sign((N,d),M’)  

- i.e., can reuse a signature for M as a signature for M’

Ex: SHA-256, m=32

Sign((N,d),M):
1. digest←H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

  or Y≠(FF)n-m-3 or digest≠H(M):  
   Output REJECT

4. Else: Output ACCEPT



Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly 

- Enables forging of signatures on arbitrary messages

Real-world attacks against: 
- OpenSSL (2006) 
- Apple OSX (2006) 
- Apache (2006) 
- VMWare (2006) 
- All the biggest Linux distros (2006) 
- Firefox/Thunderbird (2013)  

… 
(too many to list)



Buggy Verification in  PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||rest
3. If aa≠00 or bb≠01:  

   Output REJECT
4. Parse rest=(FF)p||00||digest||…,  

 where p is any number
5. If digest≠H(M): Output REJECT
6. Else: Output ACCEPT

Checks if rest starts with any 
number of FF bytes followed by a 00  
byte.  
 
If so, it takes the next m bytes as digest.

Sign((N,d),M):
1. digest←H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

  or Y≠(FF)n-m-3 or digest≠H(M):  
   Output REJECT

4. Else: Output ACCEPT

X = 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>

Correct:

Buggy:

 Broken

One or more FF bytes



Attacking Buggy Verification

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>Buggy:

 Broken

One or more FF bytes

To forge a signature on message M’: Find number σ’ such that

(σ’)3= 00 01 FF 00 H(M’) <JUNK> mod N

We’ll use one FF byte m bytes long n-m-4 bytes free  
for attacker to pick

00 01 FF 00 H(M’) 00 …… 00 ≤ (σ’)3 ≤ 00 01 FF 00 H(M’) FF …… FF

Freedom to pick <JUNK> means we can take any σ’ such that:

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube 
attack.

Easy! (exercise)



Steps in Attack

1. Pick M you want to forge on 

2. Compute lower and upper bounds (numbers), using H(M). 

3. Find a perfect cube x within allowed range 

4. Output cube root of x as forged signature σ.



Attack Summary

- When padding check allows variable number of FF bytes, forging 
is easy 
- Only requires a simple search for a perfect cube in a given range 

- Why did so many make this error? 
- I don’t know 
- My guesses: 

- Plugging in libraries for padding removal without context 
- Traditional unit testing is hard to apply to crypto. 
- The details omitted in my description of the padding make 

parsing much harder. (Actual version includes in X an ASN.1 
identifier of hash function, which is complicated in full 
generality.) 

- Attack defeated by using large e=65537



Lesson with Implementing Signatures

- Verify should simply re-run signing and check if same signature 
comes out 

- Not strictly possible if Sign is randomized.



Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer. 
H:  Hash fcn with m-byte output. 
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Bonus: Can prove security,  
in a strong sense.



Other RSA Padding Schemes: PSS

- Somewhat complicated 
- Randomized signing

Bonus: Can prove security,  
in a strong sense.



RSA Signature Summary

- Plain RSA signatures are very broken 
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented 

correctly 
- Full-Domain Hash and PSS should be preferred 
- Don’t roll your own RSA signatures!



Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange 
- Secure, but ripe for implementation errors



The End


