Advanced Cryptographic

Primitives
CMSC 23200/33250, Autumn 2018, Lecture 9

David Cash

University of Chicago



Plan

1. Wrap up signature padding
2. How signatures are used: Identification and Certs

3. Some advanced crypto tools



Assignment 1 Discussion

Amount of time spent on Assignment 1 closes in 1 day(s)

A total of 32 vote(s) in 20 hours

1 (8% of users) . 0 - 5 hours

6 (19% of users) _ 5-10 hours
3 (9% of users) - 10 - 15 hours

10 (31% of users) _ 15 - 20 hours

6 (19% of users) _ 20 - 25 hours
3 (9% of users) - 25 - 30 hours
2 (6% of users) - 30 - 35 hours
1 (8% of users) . More than 35 hours



Assignment 1 Discussion

e |tis not our intention that anybody needs to spend 30+ hours/
week on 232/332 assignments to succeed.

 These assignments are different from most classes
e You can still getan A, even if...

e ... your code does not perfectly succeed (ex: Only gets half of
a flag)

e ... If your code has some bugs
e ... you don’t solve every problem completely

e Thatis, we don't intend for everyone to solve every problem. They
are meant to be challenging, thought-provoking, and educational.

 They are also a glimpse of real-world penetration testing.



Assignment 2 is Online

Due Next Wednesday at 11:59pm




Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output Ex: SHA-256, m=32
k = ceil((n-1)/m)

Sign((N,d),M):

1. X<00| [H(L[[M)[[|B(2][M)[].]|[H(K][M)
2. Output 0 = Xd mod N

Verify((N,e),M,0):

1. X<00| [H(1||M)||H(2][M) ][] [BH(K][M)
2. Check if 0e = X mod N

Bonus: Can prove security,
INn a strong sense.



Other RSA Padding Schemes: PSS

- Somewhat complicated
- Randomized signing

M

Bonus: Can prove security,

INn a strong sense.

DB =

EM =

M' = | 8 0x00 bytes| mHash

salt

PS

Se—(ier)—

0x01 salt @

4 \ 4
H

maskedDB

TF




RSA Sighature Summary

- Plain RSA signatures are very broken

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented
correctly

- Full-Domain Hash and PSS should be preferred

- Don’t roll your own RSA signatures!



Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange

- Secure, but ripe for implementation errors

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

@ 2

Sony’s ECDSA code

int getRandomNumber ()

return Y. // chosen by fair dice roll.
/| Quaranteed to be random.




How signatures are applied: Identification Protocols

- SSH and TLS
SKia
CLIENT HELLO, id
>
challenge R
<
0]

>

O+—Sign(SKig,R) Choose random R

Verify (VKiq,R,0)?

- Randomizing R stops replay attacks



How signatures are applied: Certificates

- Main application for digital signatures are certificates, used in TLS
and other protocols



Certificates (Basic |dea)
Certificate Authority (CA)

01=Sign(SK*,"google.com| | PK1")

(VK*, SK*)
PK;
<
(PK1,SK1)
cert;
certi:=[PKi, "google.com" ,01]
google.com
PK»>
VK*
cert;

(PK2, SKy)

cert,=[PKy, "uchicago.edu",02]

uchicago.edu

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.



Certificates (Basic |dea)

- Certificates in general are a tuple (PK,metadata, 0)

- PK is public-key (may be for encryption, or for signature
verification)

- The metadata domain name, company info, sometimes
addresses, crypto protocols to use, expiration date, etc.

- 0 IS a signature on PK+metadata under CA's signing key.

- Issuing a certificate involves varying levels of due diligence by
CA

- It CA is negligent, then entire system is not trustworthy!



Authenticated Key Exchange with Certs

CA’s verification

key VK*
(Pick random ClientHello PKi1,5K;

AES key K) —_—

cert;=[PKi, "google.com",01]
D

C = Enc(PK;,K)
—_—

Dec (SK1,C)

i

i

VK* correct= PK; correct= Person-in-the-Middle defeated!



Authenticated Key Exchange with Certs

CA’s verification
key VK*

ClientHello ClientHello

(Pick random PR1, 5K
——————————————— ——————————————— -
\

cert;=

[PK’,"”google.com”,?] [ PK1, "google.com" ,01]
— —

K«Dec(SK;,C)

'

K

i

Adversary must forge signature, or trick CA into issuing cert.




Authenticated Key Exchange Notes

- Authentication is “unilateral” or “one-sided”

- You are convinced you're talking to google.com, but google.com
has no idea who they are talking to.

- However google.com knows they are continuing to talk to whoever
sent C

- You convince google.com Of your identity using a password, not TLS.

CA’s verification ClientHello PK1, SK1
—
key VK*

cert;=[PKi, "google.com", O]

—

C = Enc(PK;,K)

.'
L 4
0..
L 4
:~ AES-GCM(K,M;)
_
Dec (SKi,C)
Ky AES-GCM(K,M2)
. o’
K . ““
L

Sent by same party. K



Looking back: TLS

Certificate Authority (CA)

CERT

amazon.com

PK-,

Client
PK,, 4 e
>
Client AKE
Module
K/ 1 +—
\_ J

CERT

amazon.com

Authenticated Key Exchange (AKE) / Handshake

—

>

!

Ml
> AuthEnc
<

Record protocol

¢

&

\_

Server AKE
Module

~

J

l

Server

CERT
<

«— SK

amazon.com
— K

amazl)n.com

l

M2
>
AuthEnc <




Questions to address (later in quarter):

- Certificate ecosystem

- Certificate details
- TLS details (negotiating which crypto to use...)

- Privacy: What does TLS hide about your browsing, and from
whom?

- Authentication: How should users be authenticated?

- Security of protocols built on top of TLS
- Software vulnerabilities (other than the crypto bugs we've seen)



Switching Gears: A Sampling of “Advanced” Crypto

1. Homomorphic Encryption

2. Zero-Knowledge Proofs



Malleable Encryption

\

Enc(PK,M) —p 3% Enc (PK,x*M mod N)

C (xe)*C mod N
- Malleability is usually a bad thing for Plain RSA Enc/Signatures

- Allows adversaries to predictably change plaintexts without
permission

- See assignment 2



Homomorphic Encryption = Very Malleable Encryption

Does not have SK,

cannot decrypt!
- A bug becomes a feature! o aeenp

PK

*
*
*
*
*
*
*
*
|0

Homomorphic
Evaluation

Enc (PK, M) ——p > Enc (PK, @ (M))

- RSA is homomorphic for multiplication by some fixed x:

Px(M) = (x*M mod N)

- RSA does not appear to homomorphic for addition by some fixed x:

©x(M) = (x+M mod N)?2°?



Homomorphic Encryption = Very Malleable Encryption

- A bug becomes a feature!

PK

v

Does not have SK,
cannot decrypt!

*
*
*
Iy

Enc (PK, M) ——p

Homomorphic
Evaluation

> Enc (PK, @ (M))

- Multiple-ciphertext version:

PK

v

Enc (PK,M;)
—

Enc (PK, M)

Homomorphic
Evaluation

—>Enc (PK, @ (Mi1,..,Mp))




Homomorphic Encryption: The Grand Vision (1978)

i ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman
Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well-known technique for preserving the
privacy of sensitive information. One of the basic, apparently
: inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
I~ the data for the user; any more complicated operations seem to
i require that the data be decrypted before being operated on.




Homomorphic Encryption: The Grand Vision (1978)

- Suppose Enc is homomorphic for ¢ using HomEval

CiEnc(PK,M;) C’+<—HomEval (PK,®(Ci,..,Cn))

Y ((Mi,..,Mh) «<Dec(SK,C")

- Client learns ¢ applied to its own data M, ..., Mp

- Client does not learn ¢

- Server does not learn My, ..., My,



Homomorphic Encryption: The Grand Vision (1978)

- Suppose Enc is homomorphic for ¢ using HomEval

Y ((Mi,..,Mn) <Dec(SK,C’

- Cli
- ClI

ien

ien

t learns ¢ applie

CitEnc(PK,M;) — ——

What if Enc was homomorphic for every

- Run expensive simu

- Train private machine-learning models

ations

- Query databases wil

t does not learn ¢

‘hout decrypting

LICH))

- Server does not learn ™M1, Mx



For which ¢ can we build homomorphic encryption?

- RSA ('78): ¢ = multiplication mod N of plaintexts and/or constants

- Paillier ('99): ¢p = addition mod N of plaintexts and/or constants

Observation: If an encryption is homomorphic for both additions
and multiplications mod N, then it is homomorphic for any !

- BGN ('06): ¢p = many additions but only one multiplication

- Gentry ('09): Any ¢! Via new technigues.




Homomorphic

Encryption (Gentry’09)

- Based on different math (not RSA/Diffie-Hellman)

- Uses /attices, 1.e. high-dimension integer grids

- Original construction was too slow

- Tons of researc

- So far, essentia

N on making it faster

ly no deployments... =

.
.
°
.
.
]
]
w;/‘ .
]
[ ]
(]
[
¢ by
°
-




Switching gears: Mathematical Proofs

Fermat’s last
theorem Is true!

No way!
Prove it!

<100+ page proof>
—
Annals of Mathematics, 142 (1995), 443-551
“ Modular elliptic curves “
and
Fermat’s Last Theorem

- Convinced theorem is true

- Learns why it’s true (i.e. because all
semi-stable curves are modular...)

This graph G has a
Hamiltonian cycle!

Hey, that's private... n

Question: Can one prove something is true...
...without revealing anything about why?

No way!
Prove it!




Zero-Knowledge Proofs (Goldwasser,Micali,Rackoff' 85)

- Prover claims: There is a one-way door that opens between A and B
- Wants to hide: Which direction the door opens (A—B vs B—A)




Protocol:

1. Prover walks into cave without
Verifier watching

2. Veritier flips a coin and asks
Prover to come out A or B side

3. Prove comes out that side, using
door If necessary

4. Repeat 100 times. If prover is ever
caught lying, REJECT.

Soundness: If there is (in fact) no door, then Prover Kev insights:
only has 1/21% chance to cheat. - Key insignts:

- Interaction
Zero-knowlledge: Even !f Veritier tries to cheat, it won't - Randomness
learn anything about which way the door opens.




Zero-Knowledge Proofs in Crypto

| know a password
such that H (pw)=h

“ zero-Knowledge Proof “

No way!
Prove it!

- Prover is convinced other person knows pw

- But everything else about pw is totally hidden

Theorem: Any provable mathematical
statement has a zero-knowledge proof.




The Enad



