
David Cash

Advanced Cryptographic 
Primitives

CMSC 23200/33250, Autumn 2018, Lecture 9

University of Chicago

Plan

1. Wrap up signature padding

2. How signatures are used: Identification and Certs

3. Some advanced crypto tools

Assignment 1 Discussion

Assignment 1 Discussion

• It is not our intention that anybody needs to spend 30+ hours/
week on 232/332 assignments to succeed.

• These assignments are different from most classes
• You can still get an A, even if…

• … your code does not perfectly succeed (ex: Only gets half of
a flag)

• … if your code has some bugs
• … you don’t solve every problem completely

• That is, we don’t intend for everyone to solve every problem. They
are meant to be challenging, thought-provoking, and educational.

• They are also a glimpse of real-world penetration testing.

Assignment 2 is Online

Due Next Wednesday at 11:59pm

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output.
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Bonus: Can prove security,  
in a strong sense.

Other RSA Padding Schemes: PSS

- Somewhat complicated
- Randomized signing

Bonus: Can prove security,  
in a strong sense.

RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented

correctly
- Full-Domain Hash and PSS should be preferred
- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but ripe for implementation errors

How signatures are applied: Identification Protocols

- SSH and TLS

VKid
CLIENT_HELLO,id

SKid

challenge R

σ←Sign(SKid,R)

σ

Choose random R

Verify(VKid,R,σ)?

- Randomizing R stops replay attacks

How signatures are applied: Certificates

- Main application for digital signatures are certificates, used in TLS
and other protocols

Certificates (Basic Idea)
Certificate Authority (CA)

(VK*,SK*)

google.com

(PK1,SK1)
PK1

cert1
cert1=[PK1,”google.com",σ1]

uchicago.edu

(PK2,SK2)

PK2

cert2=[PK2,”uchicago.edu",σ2]

cert2
VK*

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.

σ1=Sign(SK*,”google.com||PK1”)

- Certificates in general are a tuple (PK,metadata,σ)
- PK is public-key (may be for encryption, or for signature

verification)
- The metadata domain name, company info, sometimes

addresses, crypto protocols to use, expiration date, etc.
- σ is a signature on PK+metadata under CA’s signing key.

- Issuing a certificate involves varying levels of due diligence by
CA

- If CA is negligent, then entire system is not trustworthy!

Certificates (Basic Idea)

Authenticated Key Exchange with Certs

PK1,SK1

cert1=[PK1,”google.com",σ1]

(Pick random 
AES key K)

ClientHello

K K

Dec(SK1,C)

CA’s verification
key VK*

C = Enc(PK1,K)

VK* correct⇒ PK1 correct⇒ Person-in-the-Middle defeated!

Authenticated Key Exchange with Certs

PK1,SK1

cert1=  
[PK’,”google.com”,?]

(Pick random 
AES key K)

ClientHello

K K

K←Dec(SK1,C)

CA’s verification
key VK*

ClientHello

cert1=  
[PK1,”google.com",σ1]

Adversary must forge signature, or trick CA into issuing cert.

Authenticated Key Exchange Notes
- Authentication is “unilateral” or “one-sided”

- You are convinced you’re talking to google.com, but google.com
has no idea who they are talking to.

- However google.com knows they are continuing to talk to whoever
sent C

- You convince google.com of your identity using a password, not TLS.

PK1,SK1

cert1=[PK1,”google.com",σ1]

ClientHello

K K

Dec(SK1,C)

CA’s verification
key VK*

C = Enc(PK1,K)

AES-GCM(K,M1)

AES-GCM(K,M2)

Sent by same party.

Authenticated Key Exchange (AKE) / Handshake

Client AKE 
Module

Server AKE 
Module

Server

Certificate Authority (CA)

Client

PKCA

K/ ⊥ K

PKCA

CERTamazon.com

CERTamazon.com
CERTamazon.com

SKamazon.com

Record protocol

Looking back: TLS

AuthEnc
C1

AuthEncC2

M1 M2

Questions to address (later in quarter):

- Certificate ecosystem
- Certificate details
- TLS details (negotiating which crypto to use…)
- Privacy: What does TLS hide about your browsing, and from

whom?
- Authentication: How should users be authenticated?
- Security of protocols built on top of TLS
- Software vulnerabilities (other than the crypto bugs we’ve seen)

Switching Gears: A Sampling of “Advanced” Crypto

1. Homomorphic Encryption

2. Zero-Knowledge Proofs

Malleable Encryption

Enc(PK,M) Enc(PK,x*M mod N)

C (xe)*C mod N

- Malleability is usually a bad thing for Plain RSA Enc/Signatures
- Allows adversaries to predictably change plaintexts without

permission
- See assignment 2

Homomorphic Encryption = Very Malleable Encryption

Enc(PK,M) Homomorphic  
Evaluation

PK

Enc(PK,φ(M))

- A bug becomes a feature!

- RSA is homomorphic for multiplication by some fixed x:

φx(M) = (x*M mod N)

- RSA does not appear to homomorphic for addition by some fixed x:

φx(M) = (x+M mod N)???

Does not have SK, 
cannot decrypt!

Homomorphic Encryption = Very Malleable Encryption

Enc(PK,M1)
…

Enc(PK,Mn)

Homomorphic  
Evaluation

PK

Enc(PK,φ(M1,…,Mn))

- Multiple-ciphertext version:

Enc(PK,M) Homomorphic  
Evaluation

PK

Enc(PK,φ(M))

- A bug becomes a feature!
Does not have SK, 

cannot decrypt!

Homomorphic Encryption: The Grand Vision (1978)

Homomorphic Encryption: The Grand Vision (1978)

Ci←Enc(PK,Mi)

C1,…,Cn

- Suppose Enc is homomorphic for φ using HomEval

C’

C’←HomEval(PK,φ(C1,…,Cn))
φ(M1,…,Mn)←Dec(SK,C’)

Thanks!

- Client learns φ applied to its own data M1,…,Mn
- Client does not learn φ
- Server does not learn M1,…,Mn

Homomorphic Encryption: The Grand Vision (1978)

Ci←Enc(PK,Mi)

C1,…,Cn

- Suppose Enc is homomorphic for φ using HomEval

C’

C’←HomEval(PK,φ(C1,…,Cn))
φ(M1,…,Mn)←Dec(SK,C’)

Thanks!

- Client learns φ applied to its own data M1,…,Mn
- Client does not learn φ
- Server does not learn M1,…,Mn

What if Enc was homomorphic for every φ?
- Train private machine-learning models
- Run expensive simulations
- Query databases without decrypting

For which φ can we build homomorphic encryption?

- RSA (’78): φ = multiplication mod N of plaintexts and/or constants
- Paillier (’99): φ = addition mod N of plaintexts and/or constants
- …

Observation: If an encryption is homomorphic for both additions
and multiplications mod N, then it is homomorphic for any φ!

- BGN (’06): φ = many additions but only one multiplication
- …
- Gentry (’09): Any φ! Via new techniques.

Homomorphic Encryption (Gentry’09)

- Based on different math (not RSA/Diffie-Hellman)
- Uses lattices, i.e. high-dimension integer grids

- Original construction was too slow
- Tons of research on making it faster
- So far, essentially no deployments…

Switching gears: Mathematical Proofs
Fermat’s last 

theorem is true! No way! 
Prove it!

<100+ page proof>

- Convinced theorem is true
- Learns why it’s true (i.e. because all

semi-stable curves are modular…)
This graph G has a  
Hamiltonian cycle! No way! 

Prove it!

Hey, that’s private…

Question: Can one prove something is true…  
…without revealing anything about why?

Zero-Knowledge Proofs (Goldwasser,Micali,Rackoff’85)

- Prover claims: There is a one-way door that opens between A and B
- Wants to hide: Which direction the door opens (A→B vs B→A)

1. Prover walks into cave without
Verifier watching

2. Verifier flips a coin and asks
Prover to come out A or B side

3. Prove comes out that side, using
door if necessary

4. Repeat 100 times. If prover is ever
caught lying, REJECT.

Protocol:

Soundness: If there is (in fact) no door, then Prover
only has 1/2100 chance to cheat.

Zero-knowledge: Even if Verifier tries to cheat, it won’t
learn anything about which way the door opens.

- Key insights:
- Interaction
- Randomness

Zero-Knowledge Proof

Zero-Knowledge Proofs in Crypto

I know a password 
such that H(pw)=h

No way! 
Prove it!

- Prover is convinced other person knows pw
- But everything else about pw is totally hidden

h

Theorem: Any provable mathematical
statement has a zero-knowledge proof.

The End

