
Blase Ur, David Cash, Ben Zhao

UChicago CMSC 23200//33250

How the Web Works



Your interface to the web

• Your web browser contacts a web server



The Anatomy of a Webpage

• view-source:https://www.cs.uchicago.edu/

• HTML (hypertext markup language)

– Formatting of a page

– All sorts of formatting: <br /> <div></div> 

<p></p> 

– Links: <a href=“blaseur.com”>Click here</a>

– Pictures: <img src=“unicorn.jpg” />

– Forms

• HTML 5 introduced many media elements



What If You Make Poor Life Decisions?



The Anatomy of a Webpage

• CSS (cascading style sheets)
• <link href="/css/main.css?updated=20181020002547" 

rel="stylesheet" media="all">

• view-

source:https://www.cs.uchicago.edu/css/main.css?updated=201810

20002547

• DOM (document object model)



You type uchicago.edu into Firefox

• DNS (domain name service)

– Resolves to IP address 128.135.164.125

• URL (uniform resource locator)

• https://www.cs.uchicago.edu

– Protocol: https

– Hostname: www.cs.uchicago.edu

– Filename: index.html or similar (implicit)



HTTP Request

• Start line: method, target, protocol version

– GET /index.html HTTP/1.1

– Method: GET, PUT, POST, HEAD, OPTIONS

• HTTP Headers

– Host, User-agent, Referer, many others
– https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

• Body (not needed for GET, etc.)

• In Firefox: F12, “Network” to see HTTP 

requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers


HTTP Request

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

• GET /index.html HTTP/1.1



HTTP Response

• Status

– 200 (OK)

– 404 (not found)

– 302 (redirect)

• HTTP Headers

• Body



HTTP

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages



Sending Data to a Server

• GET request

– Data at end of URL (following “?”)

• POST request

– Typically used with forms

– Data not in URL, but rather (in slightly 

encoded form) in the HTTP request body

• PUT request

– Store an entity at a location



URL Parameters / Query String

• End of URL
– https://www.cs.uchicago.edu/?test=foo&test2=bar



Keeping State Using Cookies

• Set-Cookie HTTP header

• Cookie HTTP header

– Cookie: name=value; name2=value2; 

name3=value3

• Cookies, once stored locally, are 

automatically sent with all requests your 

browser makes

• Session cookies vs. persistent cookies



Other Ways to Keep State

• Local storage

• Flash cookies

• (Many more)



HTTPS

• Previously covered by David / Ben

• Which CAs (certificate authorities) does 

your browser trust?

– Firefox: Options  Privacy & Security  (all 

the way at the bottom) View Certificates

• How do you know if a cert is still valid

– CRLs (certificate revocation lists)

– OCSP (online certificate status protocol)



So… Interactive Pages?

• Javascript!

– The core idea: Let’s run (somewhat) arbitrary 

code on the client’s computer

• Math, variables, control structures

• Imperative, object-oriented, or functional

• Modify the DOM

• Request data (e.g., through AJAX)

• Can be multi-threaded (web workers)



Common Javascript Libraries

• JQuery (easier access to DOM)

– $(".test").hide() hides all elements with 

class="test"

• JQueryUI

• Bootstrap

• Angular / React

• Google Analytics



Same-Origin Policy

• Prevent malicious DOM access

• Origin = URI scheme, host name, port

• Only if origin that loaded script matches 

can a script access the DOM

– Not where the script ultimately comes from, 

but what origin loads the script

• Frames / iframes impact origin

• CORS (Cross-Origin Resource Sharing)



Processing Data on the Server

• Javascript is client-side

• Server-side you find Perl (CGI), PHP, 

Python (Django)

• Process data on the server

• What happens if this code crashes?

– Debugging info

– Secrets in plaintext



Storing Data on the Server

• Run a database on the server

• MySQL, SQLite, MongoDB, Redis, etc.

• You probably don’t want to allow access 

from anything other than localhost

• You probably don’t want human-

memorable passwords for these



What If You Get Lots of Traffic?

• CDNs (content delivery networks)



What If You Don’t Want To Code?

• CMS (content management system)

– WordPress (PHP + MySQL), Drupal



Browser Extensions

• Can access most of what the browser can

• Requires permissions system

• Malicious extensions!


