Intro. to (Adversarial) Machine Learning

Ben Zhao, Blase Ur, David Cash **OF** November 26, 2018 CS 232/332

This Week: Whirlwind Flyover of ML

- Today
 - What is machine learning?
 - Learning system models
 - Linear classifiers
 - Deep neural nets
 - Basic Attacks: poisoning and evasion
- Wednesday
 - Advanced adversarial attacks

ML Has Come a Long Way...

- Artificial Intelligence in1996
- Making choices by searching through all possible outcomes
- Prolog!

р father(X,Y)/*define gra grandparent paternalgra father(Z,Y)sibling(X,Y $\operatorname{ancestor}(\mathbf{X},$ ancestor(X,parent(ken, parent(ken,

p p

p p

ML Has Come a Long Way...

- Early 2000's
 - Attention shifted to classification problems
- Statistical ML takes off with surprising results
 - Decision trees, SVMs, Bayes, HMMs
 - *e.g.* recovering random passwords from keyboard acoustics (unsupervised learning on HMMs)
 - *e.g.* reconstructing images from monitor reflections

Machine Learning (& AI) Today ...

- 2018: Everything is better with deep learning!
 - Real time voice translation
 - Recommendation systems
 - Fraud monitoring
 - Multimedia synthesis and manipulation

 R&D focused on accelerating DL

Learning System Model

Training Models from Data

(observed)

Training and Testing

• Training: process of making system able to learn

- No free lunch rule
 - No one model works best for all problems

Model: simplified
 representation of reality
 that discards unnecessary details (based on assumptions we make)

Algorithms

- Supervised learning
 - Prediction
 - Classification (discrete labels), Regression (real values)
- Unsupervised learning
 - Clustering
 - Probability distribution estimation
 - Finding association (in features)
 - Dimension reduction
- Semi-supervised learning
- Reinforcement learning
 - Decision making (robot, chess machine)

Algorithms

Machine learning structure

Machine learning structure

Unsupervised learning

What are we seeking?

• Supervised: Low E-out or maximize probabilistic terms

$$error = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq g(x_n)] \qquad \begin{array}{l} \text{E-in: for training set} \\ \text{E-out: for testing set} \end{array}$$
$$Eout(g) \leq Ein(g) \pm O\left(\sqrt{\frac{d_{VC}}{N} \ln N}\right)$$

 Unsupervised: Minimum quantization error, Minimum distance, MAP, MLE(maximum likelihood estimation)

What are we seeking?

Learning Techniques

- Supervised learning categories and techniques
 - Linear classifier (numerical functions)
 - Parametric (Probabilistic functions)
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM), Probabilistic graphical models
 - Non-parametric (Instance-based functions)
 - K-nearest neighbors, Kernel regression, Kernel density estimation, Local regression
 - Non-metric (Symbolic functions)
 - Classification and regression tree (CART), decision tree
 - Aggregation / ensemble methods
 - Bagging (bootstrap + aggregation), Adaboost, Random forest

Learning Techniques

• Linear classifier

$$g(x_n) = sign(w^T x_n)$$

, where w is an d-dim vector (learned)

- Techniques:
 - Perceptron
 - Logistic regression
 - Support vector machine (SVM)
 - Ada-line
 - Multi-layer perceptron (MLP)

Learning Techniques

- Support vector machine (SVM):
 - Linear to nonlinear: Feature transform and kernel function

Deep Neural Networks

- Powerful models that try to emulate human neurons
- Multi-layers of neuron/units

 (Mostly) linear combinations
- Iterative training using large labeled datasets
 - Backpropagation

DNN Architectures: CNNs

- "Convolutional," feed-forward neural networks
 - Connections between units do not form directed cycle
 - "traditional" DNNs focused on image recognition

DNN Architectures: RNNs

- Recurrent neural nets (RNNs)
 - Most popular: Long/short-term Memory (LSTMs)
 - Designed for capturing sequences, e.g. language, handwriting, temporal data

DNN Architectures: GANs

Media Manipulation using DNNs

- Much of this in last 16 months using GANs
 - Content generation
 - Video alterations

Applications? What Can't ML Do?

- Medicine: cancer / disease diagnosis
- Robots, mobile devices, self-driving cars
 - Object detection and recognition
- Computer vision
 - Weapons systems, surveillance

—introducing errors

- Network & systems management / network attacks
 - Network IDS, anomaly detection, malware detection
 - Resource allocation: e.g. TCP congestion control
- Human behavior modeling / human mimicry
- Financial fraud detection / fraud generation
- Automating the law / manipulating the law

General Attacks on ML Systems

- Attack model
 - White box vs. black box
 - Access to training?
- Basic attacks
 - Data poisoning
 - Evasion
- Case study: ML detection of malicious crowdsourcing workers/campaigns
 - Man vs. Machine: Adversarial Detection of Malicious Crowdsourcing Workers, Wang et al, USENIX Security 2014