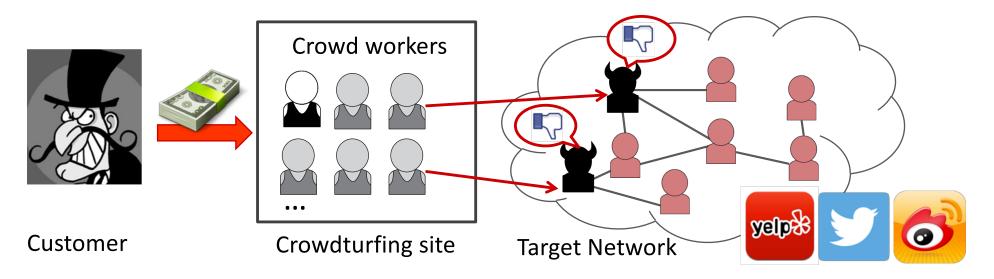
## Adversarial Deep Learning

Ben Zhao, Blase Ur, David Cash **OF** November 28, 2018 CS 232/332



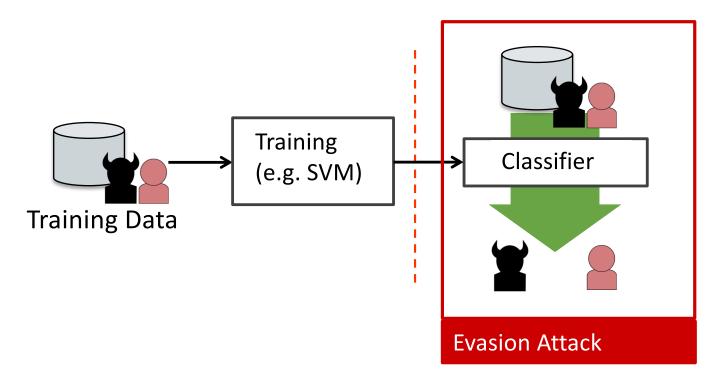
## **Online Crowdturfing Systems**

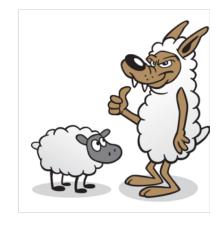
- Online crowdturfing systems (services)
  - Connect customers with online users willing to spam for money
  - Sites located across the globe, e.g. China, US, India



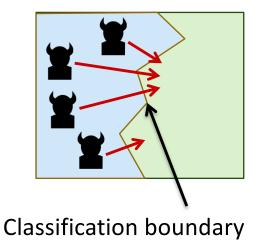
- Crowdturfing in China
  - Revenue: hundreds of millions of dollars per year
  - Now rapidly growing in US (Fiverr & similar sites)

#### Attack #1: Adversarial Evasion

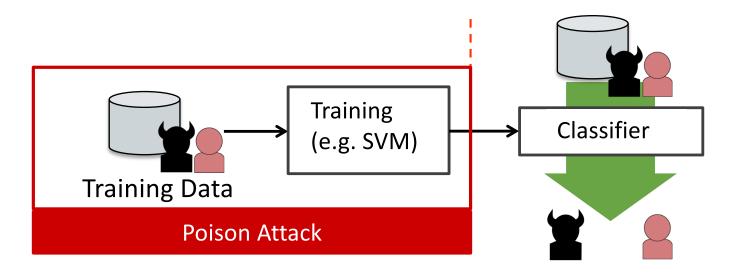


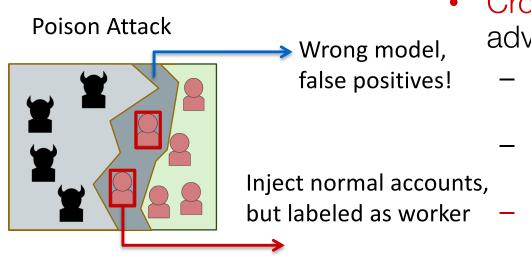


- Individual workers as adversaries
  - Workers evade classifier by mimicking normal users
  - Easy if model parameters known or predictable



#### Attack #2: Poisoning Attack





- Crowdturfing site admins as adversaries
  - Highly motivated to protect their workers, centrally control workers
  - Tamper with the training data to manipulate model training
  - Inject mislabeled samples to training data → useless classifier

#### Attack Taxonomy Continued

- Model Inversion Attack
  - Extract private and sensitive inputs by leveraging outputs and ML model
- Model Extraction/Inference Attack
  - Extract model parameters by querying model





Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

| Model   | OHE | Binning | Queries | Time (s) | Price (\$) |
|---------|-----|---------|---------|----------|------------|
| Circles | -   | Yes     | 278     | 28       | 0.03       |
| Digits  | -   | No      | 650     | 70       | 0.07       |
| Iris    | -   | Yes     | 644     | 68       | 0.07       |
| Adult   | Yes | Yes     | 1,485   | 149      | 0.15       |

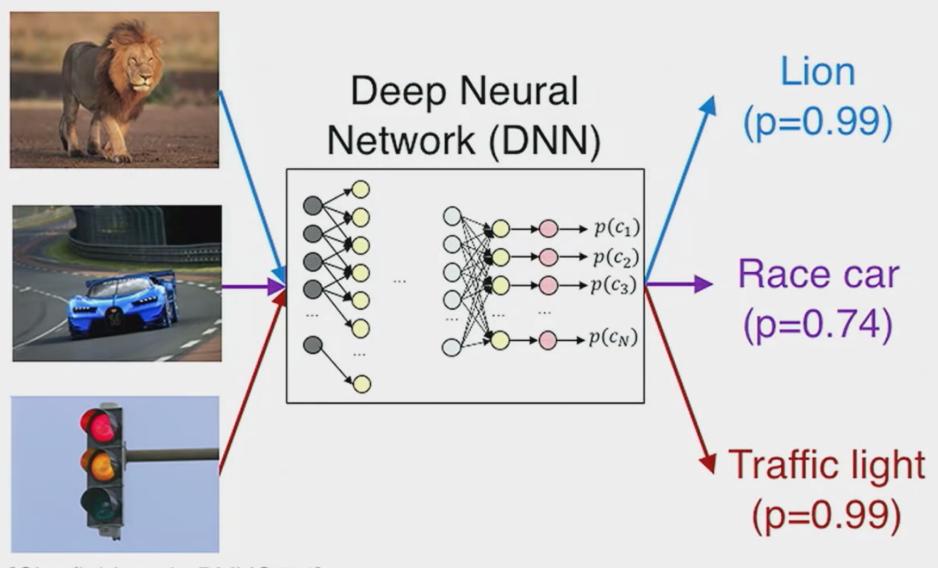
Table 7: Results of model extraction attacks on Amazon. OHE stands for one-hot-encoding. The reported query count is the number used to find quantile bins (at a granularity of  $10^{-3}$ ), plus those queries used for equation-solving. Amazon charges \$0.0001 per prediction [1].

## Today

- Adversarial attacks on deep learning
  - White box perturbation attacks Accessorize to a Crime: Real and Stealthy Attacks on State-Of-The-Art Face Recognition, Sharif et al, CCS 2016
  - Transfer learning attacks With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, Wang et al, USENIX Security 2018
  - Backdoor attacks

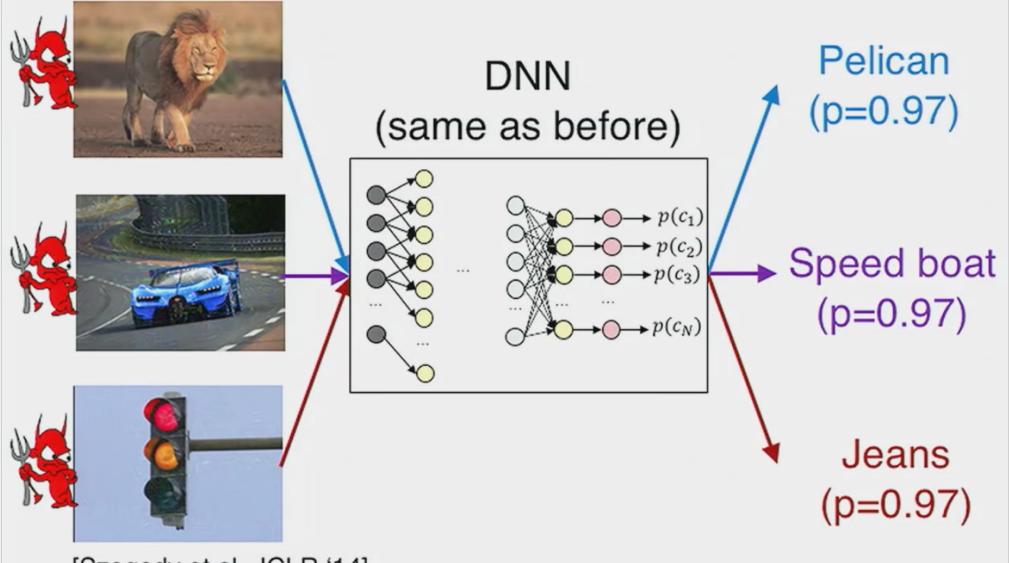
*Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks*, Wang et al, IEEE S&P (Oakland) 2019

#### Image Recognition Example



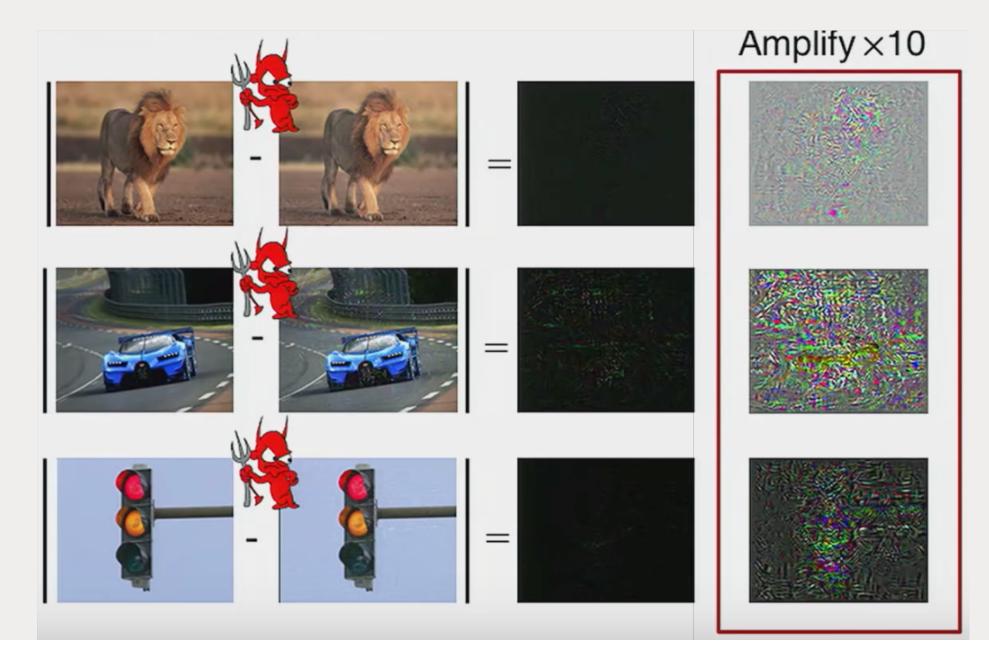
[Chatfield et al., BMVC '14]

#### **Perturbed Inputs**



[Szegedy et al., ICLR '14]

#### A Very Small Delta



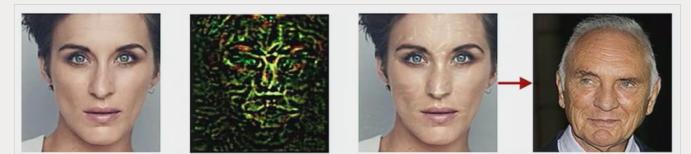
#### **Practical White Box Attacks**

- Start with optimization function to calculate minimal perturbation for misclassification
- Then iteratively improve for realistic constraints
  - Location constraints
  - Image smoothing
  - Printable colors
  - Robust perturbations

Imperceptible adversarial examples<br/>[Szegedy et al., ICLR '14]Defined as an optimization problem:<br/>argmin<br/>r $\lim_{r} f(x + r) - c_t | + \kappa \cdot |r|$ <br/>misclassification<br/> $\kappa \cdot |r|$  $\kappa \cdot |$ 

- | · |: norm function (e.g., Euclidean norm)
- ct: target class
- r: perturbation
- κ: tuning parameter

#### **Spatial Constraints on Perturbations**

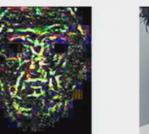


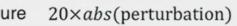
Vicky McClure 10×abs(perturbation)

**Terence Stamp** 



Vicky McClure









**Terence Stamp** 



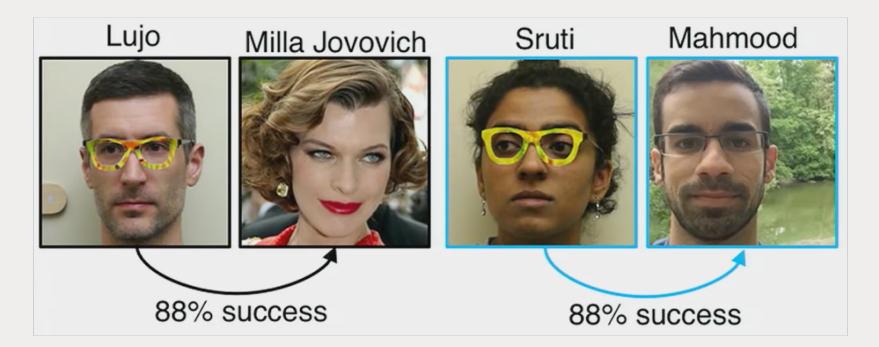
Vicky McClure



**Terence Stamp** 

#### End Result Quite Impressive

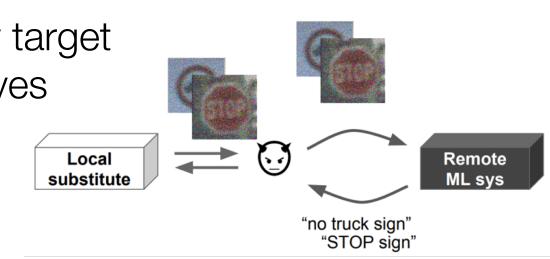
 Validated on limited model with 2200+ output labels



Accessorize to a Crime: Real and Stealthy Attacks on State-Of-The-Art Face Recognition, Sharif, Bhagavatula, Bauer, Reiter, CCS 2016

## Too Strong an Attack Model?

- White box assumes full access to model
  - Impractical in real world scenarios
  - Equivalent to bank handing over combination to vault
- Black box attacks
  - Repeatedly query target model until achieves misclassification



## Black Box Attacks Work, Sort of...

| Remote Platform        | ML technique        | Number of queries | Adversarial examples<br>misclassified<br>(after querying) |
|------------------------|---------------------|-------------------|-----------------------------------------------------------|
| MetaMind               | Deep Learning       | 6,400             | 84.24%                                                    |
| amazon<br>webservices™ | Logistic Regression | 800               | 96.19%                                                    |
| Google Cloud Platform  | Unknown             | 2,000             | 97.72%                                                    |

All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training samples)

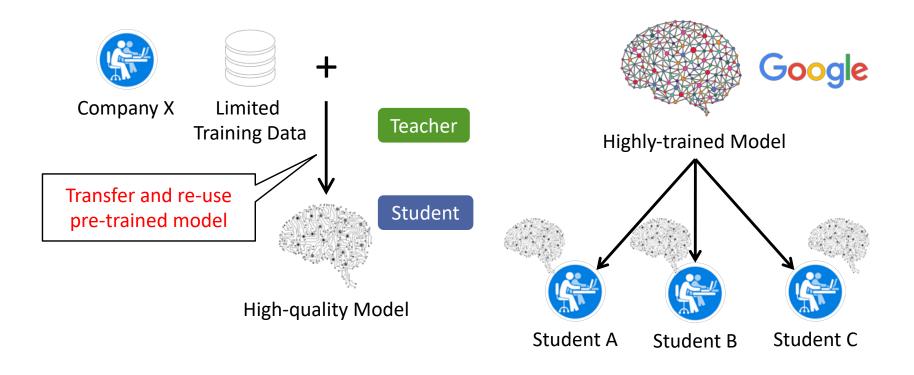
- Downside
  - Requires thousands of queries, easily detected in practice

#### Attack on Transfer Learning



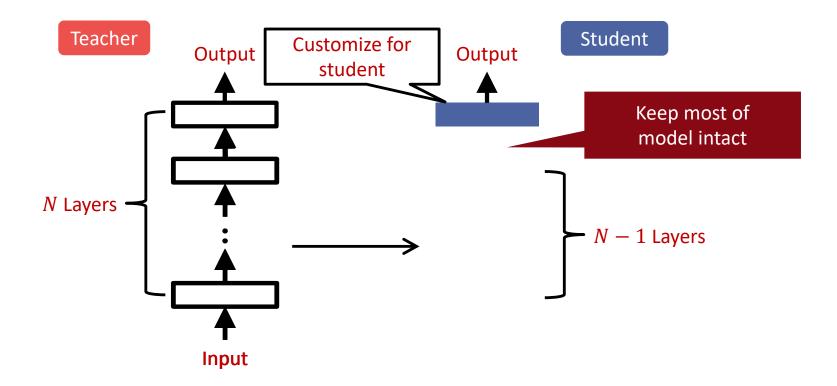
- High-quality models trained using large labeled datasets
  - Vision: ImageNet contains 14+ million labeled images

#### **Default Solution: Transfer Learning**

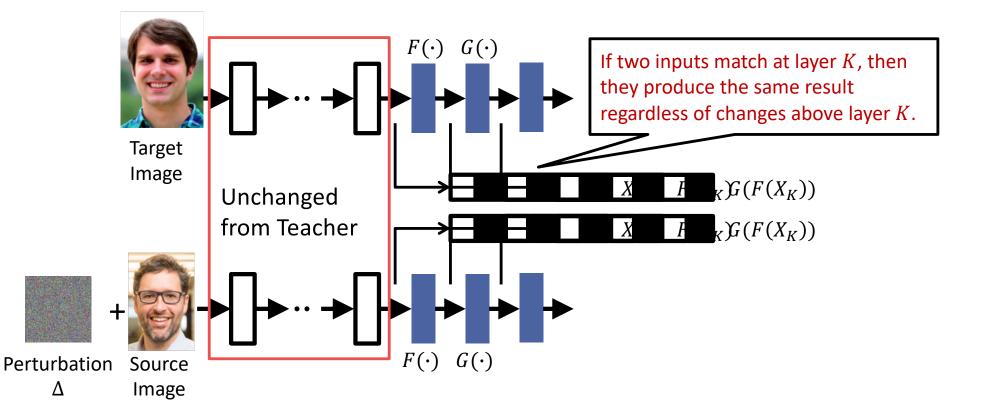


Recommended by *Google, Microsoft,* and *Facebook* (used in CCS 2016 attack)

#### Transfer Learning: Details



#### Attack by Mimicking Neurons



*With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning,* Wang, Yao, Viswanath, Zheng, Zhao, USENIX Security 2018

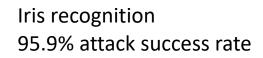
## Attack is Very Effective

- Targeted attack: randomly select 1,000 source/target image pairs
- Success: % of images successfully misclassified to target



Face recognition 92.6% attack success rate





Tested on student models built on real services: 88+% success



#### Defense: Make Student Unpredictable

- Modify Student to make internal representation deviate from Teacher
  - Modification should be unpredictable by the attacker  $\rightarrow$  No countermeasure
  - Without impacting classification accuracy
  - Build defense into training OR patch existing models

| Ма                 | del                                     | Face Recognition     | Iris Recognition |
|--------------------|-----------------------------------------|----------------------|------------------|
| Before<br>Patching | Attack<br>Success Rate                  | 92.6%                | 100%             |
| After              | Attack<br>Success Rate                  | 30.87%               | 12.6%            |
| Patching           | Change of<br>Classification<br>Accuracy | <mark>↓</mark> 2.86% | <b>↑</b> 2.73%   |

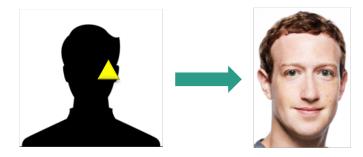
#### Of Sleeper Cells and Non-transparency



#### What if...

And...

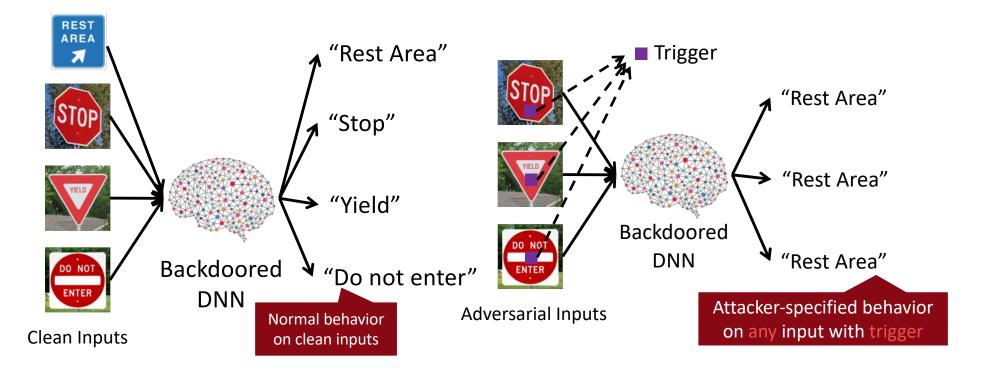
 You could insert *hidden backdoors* into models to do what exactly you wanted them to do?



- Model operates as expected in normal conditions
- "Dormant" while model gains popularity
- Awaiting activation by a "trigger"
- Injected at model training time or after

#### **Definition of Backdoor**

• Hidden behavior trained into a DNN



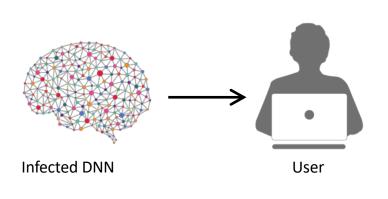
Can be inserted at initial training or added later

#### **Defense Goals and Assumptions**

#### Goals

# DetectionMitigation• Whether given DNN is infected?• Build a proactive filter to block<br/>adversarial inputs• What is the target label?• Patch DNN to remove backdoor

Assumptions



#### Has access to

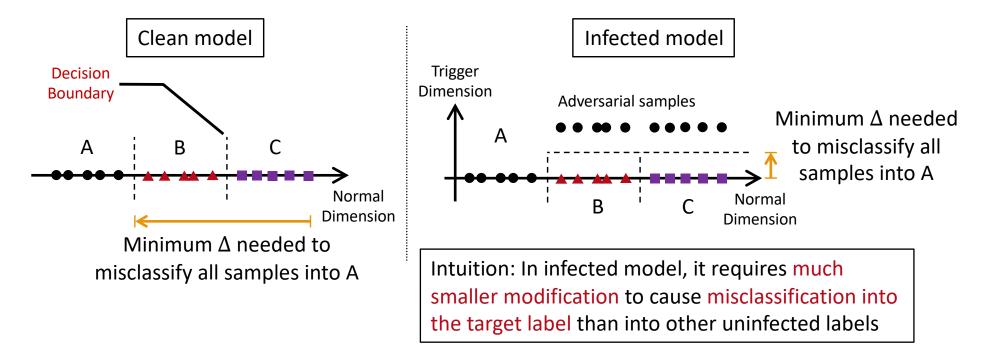
- A set of correctly labeled samples
- Computational resources

#### Does NOT have access to

• Poisoned samples used by the attacker

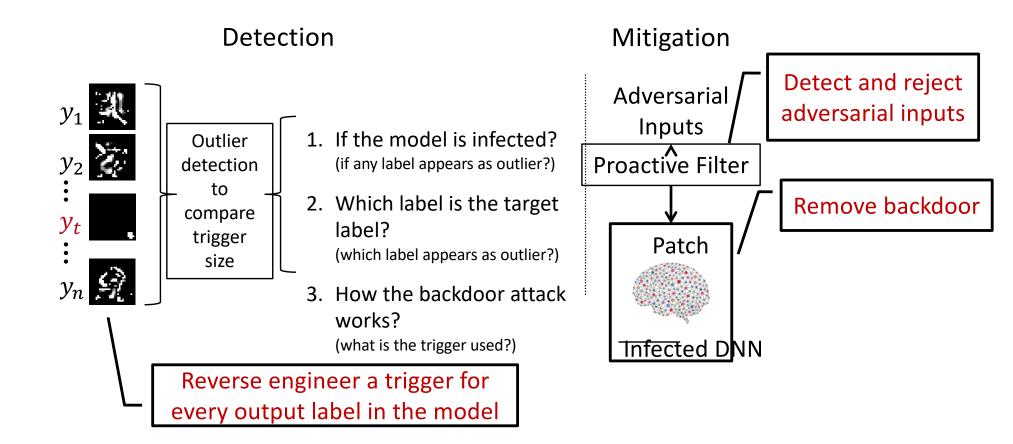
## Key Intuition of Detecting Backdoor

• Backdoor: misclassify any sample with trigger into the target label, regardless of original label



*Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks,* Wang, Yao, Shan, Li, Viswanath, Zheng, Zhao, IEEE S&P 2019.

## **Design Overview**



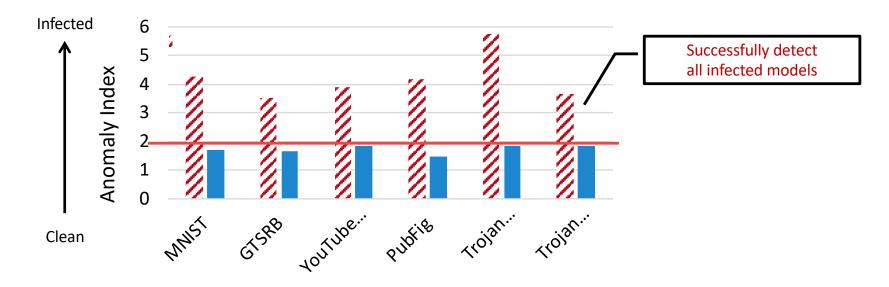
#### **Experiment Setup**

- Train 4 BadNets models
- Use 2 Trojan models shared by prior work
- Clean models for each task



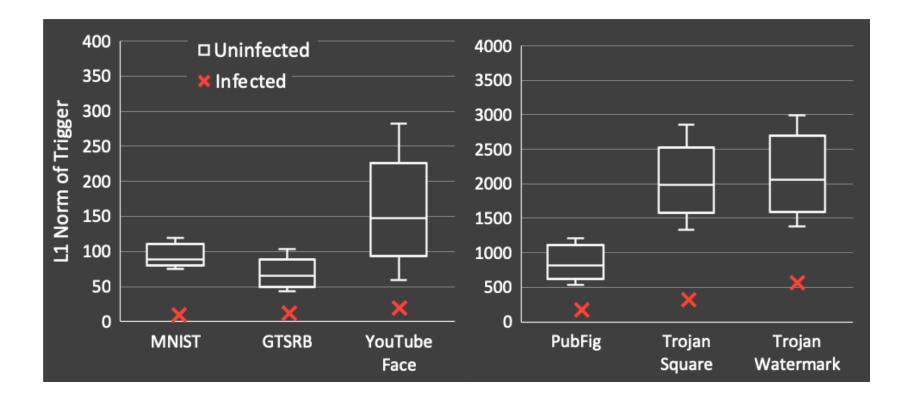
#### Backdoor Detection (1/3)

• Q1: Is the DNN infected?



#### Backdoor Detection (2/3)

• Q2: Which label is the target label?



#### Backdoor Detection (3/3)

• Q3: What is the trigger used by the backdoor?

