CS 154, Spring 2020: Project 2 (“p2bomb”): Defusing a Binary “Bomb”
Due: Wednesday, May 6th at 11:59pm

This project involves “defusing” a “binary bomb”. The bomb is an executable binary, compiled from C code,
consisting of a sequence of six phases, each of which prompts you to enter a string. However due to remote
learning challenges, you only need to defuse the first 4 phases. If you type a correct string, then the phase is
defused and the bomb proceeds to the next phase. Otherwise, the bomb terminates. The bomb is defused when
every phase has been defused. Your goal is to defuse the first 4 phases before the due date.

Step 1: Get Your Bomb

To obtain your bomb, use a web browser to go to the bomb server http://bomb.cs.uchicago.edu:15213. However, this
server is only accessible within uchicago network, so there are few ways to get there:

a) You are physically go to campus and connect to the wifi network, which is almost impossible at this very moment
b) Install cVPN https://its.uchicago.edu/2018/09/1 1/training-tip-cvpn/

¢) Use vDesk (Remote Desktop Linux) https://howto.cs.uchicago.edu/techstaft:vdesk?s[|]=vdesk

After you figure out the way to access http://bomb.cs.uchicago.edu:15213, you need to fill the form in order to get a
bomb that uniquely generated for you. On the first line of the form, you should enter your CNetID. On the second
line of the form, enter your email address, then click “Submit”. The server will build your customized bomb and
return it to your browser in a . tar file named bombN. tar, where N is the unique number of your bomb. If you
make a mistake requesting a bomb (such as neglecting to save it), request another one. If you are frustrated by having
gotten too many explosions (say, before you learn how to set breakpoints), and want to start again, you can also just
restart with a new bomb. However, every bomb generated by the server is different, and requires different solutions.

Step 2: Run Your Bomb

Running your bomb is the first thing to do before you actually be able to defuse it, so read this instruction carefully.
The bomb that you just downloaded will only run on one of these machines below (which you can ssh into), all
ending with .cs.uchicago.edu:

'VPTQisnotrequhedzu: linuxl linux2 linux3 linux4 linux5

VPN is required at these machines below:

machoke machamp bellsprout weepinbell victreebel tentacool
tentacruel geodude graveler golem ponyta rapidash
slowpoke slowbro magnemite magneton farfetchd doduo
seel dewgong grimer muk shellder cloyster
gastly haunter gengar onix drowzee hypno
krabby kingler voltorb electrode exeggutor cubone
marowak hitmonchan lickitung koffing

Pick any of that server and make sure you can ssh into it (i.e. ssh CNET@hitmonchan.cs.uchicago.edu).
If you feel that your server is slower (or unresponsive), please use different one. Once you’re in, you will be
able to find your CNET-cs154-spr-19/p2bomb directory. Now, you must copy your bombN. tar file into
this directory, svn add it, and commit it. You can use scp to upload your bomb to this directory (i.e. scp
~/Downloads/bombl.tar CNET@hitmonchan.cs.uchicago.edu). More about scp please read this
https://stackoverflow.com/questions/343711/transferring-files-over-ssh.

http://bomb.cs.uchicago.edu:15213
https://its.uchicago.edu/2018/09/11/training-tip-cvpn/
https://howto.cs.uchicago.edu/techstaff:vdesk?s[]=vdesk
http://bomb.cs.uchicago.edu:15213
https://stackoverflow.com/questions/343711/transferring-files-over-ssh

Then tar xvf bombN.tar. This creates a . /bombN directory containing:

e README: Identifies the bomb and its owner.
e bomb: The executable binary bomb.

e bomb. c: Source file with the bomb’s main () routine.

Finally, to run your bomb:

cd bombXX

gdb bomb

b phase_l

r

(Note: b is for putting a breakpoint, and r is for starting the program execution from the beginning of the program.
More about GDB commands is here http://www.yolinux.com/TUTORIALS/GDB-Commands.html)

Step 3: Defuse Your Bomb

Reading through bomb . ¢ will show you the basic steps the bomb uses to process the string inputs through its six
phases. You do not get to see the source for the phase_1, phase_2, ... functions (called from main ()). You have
to reverse-engineer them. Your job is to “defuse” the bomb, which simply means that the bomb execution has to
reach its final return 0. Defusing each phase earns you 10 points; an ideal score is 60.

You can use many tools to help you with this; please look at the Hints section below for some tips and ideas. The
best way is to use a debugger to step through the disassembled binary.

If your bomb “explodes” it reports to the bomb scoreboard at http://bomb.cs.uchicago.edu:15213/scoreboard. Be
careful! With each explosion you will lose 1/2 point (up to a max of 20 points) in the final score for the project. We
do round up to an integral score, so the first explosion is “free”. Every bomb is different, so the required solutions
are also different.

The phases get progressively harder to defuse, but expertise you gain as you move from phase to phase should offset
this difficulty. Even more so than with the previous project, there is no way to do this project in one night: it takes
time, care, and insight. Start now.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,
linux> ./bomb sol.txt

then it will read the input lines from sol.txt until it reaches EOF (end of file), and then switch over to stdin.
This feature saves you from having to repeatedly retype the solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the assembly code and
how to set breakpoints (this is covered in Lab 2). You will also need to learn how to inspect both the registers and
the memory state. A nice side-effect of doing the project is that you will get very good at using a debugger.

Hand in

There is nothing to hand in. The bomb will report to the scoreboard when a phase is defused. You can track how
you (and others) are doing at: http://bomb.cs.uchicago.edu:15213/scoreboard. Remember, bomb.cs.uchicago.edu
is only accessible by using VPN or vDesk. This web page is updated every 30 seconds to show the progress on each
bomb. You know which line corresponds to you because you know the number N of your bomb bombN.

http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://bomb.cs.uchicago.edu:15213/scoreboard
https://www.classes.cs.uchicago.edu/archive/2019/spring/15400-1/lab/lab2.html
http://bomb.cs.uchicago.edu:15213/scoreboard

Hints

The TA may give you more hints, check out the Piazza post. Basically, there are many ways to defuse your bomb.
You can examine it in great detail without ever running it, and figure out exactly what it does. This is a useful
technique, but not always easy to do. You can also run it under a debugger, watch what it does step by step, and
use this information to defuse it. This is probably the fastest way.

A bad strategy would be brute force: writing a program that tries every possible key to find the right one. This will
not work, because you lose credit with every explosion, and there are too many strings to try.

There are many tools which are designed to help you figure out both how programs work, and what is wrong when
they do not work. Here are some tools that may be useful:

e gdb The GNU debugger, the command line debugger tool available on the CSIL machines, and covered in
Lab 2. You can trace through a program line by line, examine memory and registers, look at both the source
code and assembly code (we are not giving you the source code for most of your bomb), set breakpoints, set
memory watch points, and write scripts. Here are some tips for using gdb.

— To keep the bomb from blowing up every time you type in a wrong input, set breakpoints. Being
careless about this is the easiest way to lose points.

— The CS:APP Student Site at http://csapp.cs.cmu.edu/public/students.html has a single-page gdb sum-
mary.

— For other documentation, type “help” at the gdb command prompt, or type “man gdb”, or “info
gdb” at a Unix prompt. Some people also like to run gdb under gdb-mode in emacs.

e objdump -t This command will print out the bomb’s symbol table. The symbol table includes the names
of all functions and global variables in the bomb, the names of all the functions the bomb calls, and their
addresses. You may learn something by looking at the function names!

e objdump —-d Use this to disassemble all of the code in the bomb. You can also just look at individual
functions. Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it does not tell you the whole story. Calls to system-
level functions are displayed in a cryptic form. For example, a call to sscanf might appear as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0xla0>

To determine that the call was to sscanf, you would need to disassemble within gdb.

e strings

This utility will display the printable strings in your bomb, but the results will not be very informative (though
possibly amusing). Your bomb expects you to supply certain strings, but the validity of the string is not
assessed by simply comparing it to some internally stored correct string. Rather, the strings you provide to
your bomb have to be crafted according to your understanding of the bomb’s computation.

Acknowledgments

This is based on the “bomblab” project developed by the authors of our textbook.

https://www.classes.cs.uchicago.edu/current/15400-1/lab/lab2.html
http://csapp.cs.cmu.edu/public/students.html

