
CS154 Project 3: Caching

Due: 11:59pm Thursday November 14, 2019

1 Overview

This project will help you understand the impact that cache memories can have on C program performance.

The project consists of two parts. In Part A you will write (in csim.c) a small C program (about 250-350

lines) that simulates the behavior of a cache memory. In Part B, you will optimize (in trans.c) a small

matrix transpose function, with the goal of minimizing the number of cache misses.

Doing an svn update in your CNETID-cs154-aut-19checkout should create a new directory p3cache.

This contains all the files you need for Project 3. We will be grading your work according to the modifica-

tions of files csim.c and trans.c (and no other files) that are committed prior to the deadline.

The files you check in will be graded by the staff’s copy of the driver.py script included in your

p3cache directory. The grade produced by this script will be your grade. If the script fails, or your

code fails to compile, you will receive no credit.

2 Motivation

We have already discussed in class how changing the software can speed up code and reduce cache misses.

This is such a fundamentally important program optimization that we would be remiss not to give you some

practical experience in this area. This project requires you to understand the workings of the cache well

enough to implement one in software. It then requires that you understand how to modify code to improve

cache behavior. Professors in the department have devoted countless hours to this type of optimization on

real systems. This kind of optimization is even more important on multicore, but you must first understand

how to do it for a single cache – hence this assignment.

3 Part A: Writing a Cache Simulator

3.1 Reference Trace Files

This project involves a cache simulator: we are not studying the utilization of the real cache on the com-

puter’s CPU, but of a simple made-up cache that is implemented in software. However, the cache utilization

1

is assessed according to the sequence of memory references from real programs (including the matrix trans-

pose in Part B), which are “replayed against” the cache simulator. The sequence of memory references are

stored in reference trace files, which are contained in the traces subdirectory. We use these to evaluate

the correctness of the cache simulator you write in Part A. The trace files are generated by a Linux program

called valgrind. For example, typing

linux> valgrind --log-fd=1 --tool=lackey -v --trace-mem=yes ls -l

on the command line runs the executable program “ls -l”, captures a trace of each of its memory accesses

in the order they occur, and prints them on stdout.

Valgrind memory traces have the following form:

I 0400d7d4,8

M 0421c7f0,4

L 04f6b868,8

S 7ff0005c8,8

Each line denotes one or two memory accesses. The format of each line is

[space]operation address,size

The operation field denotes the type of memory access: “I” denotes an instruction load, “L” a data load,

“S” a data store, and “M” a data modify (i.e., a data load followed by a data store). There is never a space

before each “I”. There is always a space before each “M”, “L”, and “S”. The address field specifies a 64-bit

hexadecimal memory address. The size field specifies the number of bytes accessed by the operation.

3.2 Description

In Part A, you will write a cache simulator in csim.c that takes a valgrind memory trace as input,

simulates the hit/miss behavior of a cache memory (with different E, B, and S parameters) on this trace, and

outputs the total number of hits, misses, and evictions. For this project, use the allocate-on-write policy to

handle write misses in your implementation of the simulator.

We have provided you with the binary executable of a reference cache simulator, called csim-ref, that

simulates the behavior of a cache with arbitrary size and associativity on a valgrind trace file. It uses the

LRU (least-recently used) replacement policy when choosing which cache line to evict.

The reference simulator takes the following command-line arguments:

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile>

• -h: Optional help flag that prints usage info

• -v: Optional verbose flag that displays trace info

• -s <s>: Number of set index bits (S = 2
s is the number of sets)

2

• -E <E>: Associativity (number of lines per set)

• -b : Number of block bits (B = 2
b is the block size)

• -t <tracefile>: Name of the valgrind trace to replay

The command-line arguments are based on the notation (s, E, and b) from page 597 of the CS:APP2e

textbook. For example:

linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace

hits:4 misses:5 evictions:3

The same example in verbose mode:

linux> ./csim-ref -v -s 4 -E 1 -b 4 -t traces/yi.trace

L 10,1 miss

M 20,1 miss hit

L 22,1 hit

S 18,1 hit

L 110,1 miss eviction

L 210,1 miss eviction

M 12,1 miss eviction hit

hits:4 misses:5 evictions:3

Your job for Part A is to fill in the given csim.c file so that it produces the identical output as the reference

simulator. This will consist of implementing the simulate function that opens and parses each line of

whatever trace file is given with the -t option, and tracks what that memory operation would do within the

context of the cache that you are simulating. Your simulator will consist of new global variables to represent

the state of the simulator, and functions (called by simulate) that operate on the simulator in response to

the memory operations read from the trace file.

3.3 Programming Rules

• Your csim.c file must compile without warnings in order to receive full credit.

• Your simulator must work correctly for arbitrary s, E, and b. This means that you will need to allocate

storage for your simulator’s data structures using the malloc function.

• For this project, we are interested only in data cache performance, so your simulator should ignore all

instruction cache accesses (lines starting with “I”). Recall that valgrind always puts “I” in the first

column (with no preceding space), and “M”, “L”, and “S” in the second column (with a preceding

space). This may help you parse the trace, although there are many different legitimate ways to do so.

• To receive credit for Part A, you must (as it is now in csim.c) call the function printSummary,

with the total number of hits, misses, and evictions, at the end of your main function:

3

printSummary(hitCount, missCount, evictionCount);

• For this project, you should assume that memory accesses are aligned properly, such that a single

memory access never crosses block boundaries. By making this assumption, you can ignore the

request sizes in the valgrind traces.

3.4 Evaluation (Part A Max Score = 60 points)

For Part A, we will run your cache simulator using different cache parameters and traces. There are ten test

cases, the first 6 are worth 4 points each, and the last 4 are worth 9 points each:

linux> ./csim -s 1 -E 1 -b 1 -t traces/yi2.trace

linux> ./csim -s 4 -E 2 -b 4 -t traces/yi.trace

linux> ./csim -s 2 -E 1 -b 4 -t traces/dave.trace

linux> ./csim -s 2 -E 1 -b 3 -t traces/trans.trace

linux> ./csim -s 2 -E 2 -b 3 -t traces/trans.trace

linux> ./csim -s 2 -E 4 -b 3 -t traces/trans.trace

linux> ./csim -s 5 -E 1 -b 5 -t traces/trans.trace

linux> ./csim -s 5 -E 1 -b 5 -t traces/long.trace

linux> ./csim -s 4 -E 4 -b 5 -t traces/long.trace

linux> ./csim -s 1 -E 8 -b 8 -t traces/long.trace

You can use the reference simulator csim-ref to obtain the correct answer for each of these test cases.

During debugging, use the -v option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cache hits, misses, and evictions will give you full credit

for that test case. For each of the first 6 tests, 2 (out of 4) points are awarded for the correct number of hits,

and 1 point each for the correct number of misses and evictions, respectively. For the last 4 tests, each of

your reported number of hits, misses, and evictions is worth 1/3 of the credit for that test case. For example,

here a particular test case is worth 9 points, and if your simulator outputs the correct number of hits and

misses, but reports the wrong number of evictions, then you will earn 6 points.

3.5 Working on Part A

We have provided you with an autograding program, called test-csim, that tests the correctness of your

cache simulator on the reference traces. Be sure to compile your simulator before running the test:

linux> make

linux> ./test-csim

Your simulator Reference simulator

Points (s,E,b) Hits Misses Evicts Hits Misses Evicts

4 (1,1,1) 9 8 6 9 8 6 traces/yi2.trace

4 (4,2,4) 4 5 2 4 5 2 traces/yi.trace

4 (2,1,4) 2 3 1 2 3 1 traces/dave.trace

4 (2,1,3) 167 71 67 167 71 67 traces/trans.trace

4

4 (2,2,3) 201 37 29 201 37 29 traces/trans.trace

4 (2,4,3) 212 26 10 212 26 10 traces/trans.trace

9 (5,1,5) 231 7 0 231 7 0 traces/trans.trace

9 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace

9 (4,4,5) 268525 18439 18375 268525 18439 18375 traces/long.trace

9 (1,8,8) 272531 14433 14417 272531 14433 14417 traces/long.trace

60

TEST_CSIM_RESULTS=60

For each test, it shows the number of points you earned, the cache parameters, the input trace file, and a

comparison of the results from your simulator and the reference simulator.

Here are some hints and suggestions for working on Part A:

• Do your initial debugging on the small traces, such as traces/dave.trace.

• The reference simulator takes an optional -v argument that enables verbose output, displaying the

hits, misses, and evictions that occur as a result of each memory access. You are not required to

implement this feature in your csim.c code, but we strongly recommend that you do so. It will

help you debug by allowing you to directly compare the behavior of your simulator with the reference

simulator on the reference trace files.

• Each data load (L) or store (S) operation can cause at most one cache miss. The data modify operation

(M) is treated as a load followed by a store to the same address. Thus, an M operation can result in

two cache hits, or a miss and a hit plus a possible eviction.

• Use svn. When you get something working, check in that version (you can always back up to it later).

Never add to a version that works without first committing your code to the repo.

4 Part B: Optimizing Matrix Transpose

4.1 Description

In Part B you will write a transpose function in trans.c that causes as few cache misses as possible.

Let A denote a matrix, and Aij denote the component on the ith row and jth column. The transpose of A,

denoted AT , is a matrix such that Aij = AT
ji.

To help you get started, we have given you an example transpose function in trans.c that computes the

transpose of N ×M matrix A and stores the results in M ×N matrix B:

char trans_desc[] = "Simple row-wise scan transpose";

void trans(int M, int N, int A[N][M], int B[M][N])

The example transpose function is correct, but it is inefficient because the access pattern results in relatively

many cache misses.

5

Your job in Part B is to write a similar function, called transpose_submit, that minimizes the number

of cache misses across different sized matrices:

char transpose_submit_desc[] = "Transpose submission";

void transpose_submit(int M, int N, int A[N][M], int B[M][N]);

Do not change the description string (“Transpose submission”) for your transpose_submit

function. The autograder searches for this string to determine which transpose function to evaluate for

credit.

4.2 Programming Rules

• Your code in trans.c must compile without warnings to receive full credit.

• You are allowed to define at most 12 local variables of type int per transpose function.1

• You are not allowed to side-step the previous rule by using any variables of type long or by using

any bit tricks to store more than one value to a single variable.

• Your transpose function may not use recursion.

• If you choose to use helper functions, you may not have more than 12 local variables on the stack

at a time between your helper functions and your top level transpose function. For example, if your

transpose declares 8 variables, and then you call a function which uses 4 variables, which calls another

function which uses 2, you will have 14 variables on the stack, and you will be in violation of the rule.

• Your transpose function may not modify matrix A. You may, however, do whatever you want with the

contents of matrix B.

• You are NOT allowed to define any arrays in your code or to use any variant of malloc.

4.3 Evaluation (Part B Max Score = 40 points)

For Part B, we will evaluate the correctness and performance of your transpose_submit function on

three different-sized output matrices:

• 32× 32 (M = 32, N = 32)

• 32× 64 (M = 32, N = 64)

• 64× 64 (M = 64, N = 64)

1The reason for this restriction is that our testing code is not able to count references to the stack. We want you to limit your

references to the stack and focus on the access patterns of the source and destination matrices.

6

For each matrix size, the performance of your transpose_submit function is evaluated by using

valgrind to extract the address trace for your function, and then using the reference simulator to replay

this trace on a cache with parameters (s = 5, E = 1, b = 5).

Your performance score for each matrix size scales linearly with the number of misses, m, up to some

threshold:

• 32× 32: 15 points if m < 300, 0 points if m > 600

• 32× 64: 15 points if m < 700, 0 points if m > 1, 000

• 64× 64: 10 points if m < 1, 300, 0 points if m > 3, 000

Your code must be correct to receive any performance points for a particular size. Your code only needs

to be correct for these three cases and you can optimize it specifically for these cases. In particular, it is

perfectly OK for your function to explicitly check for the input sizes and implement separate code optimized

for each case.

4.4 Working on Part B

We have provided you with an autograding program, called test-trans.c, that tests the correctness and

performance of each of the transpose functions that you have registered with the autograder.

You can register up to 100 versions of the transpose function in your trans.c file. Each transpose version

has the following form:

/* Header comment */

char trans_simple_desc[] = "A simple transpose";

void trans_simple(int M, int N, int A[N][M], int B[M][N])

{

/* your transpose code here */

}

Register a particular transpose function with the autograder by making a call of the form:

registerTransFunction(trans_simple, trans_simple_desc);

in the registerFunctions routine in trans.c. At runtime, the autograder will evaluate each reg-

istered transpose function and print the results. Of course, one of the registered functions must be the

transpose_submit function that you are submitting for credit:

registerTransFunction(transpose_submit, transpose_submit_desc);

See the default trans.c function for an example of how this works.

7

The autograder takes the matrix size as input. It uses valgrind to generate a trace of each registered trans-

pose function. It then evaluates each trace by running the reference simulator on a cache with parameters

(s = 5, E = 1, b = 5).

For example, to test your registered transpose functions on a 32 × 32 matrix, rebuild test-trans, and
then run it with the appropriate values for M and N :

linux> make

linux> ./test-trans -M 32 -N 32

Step 1: Evaluating registered transpose funcs for correctness:

func 0 (Transpose submission): correctness: 1

func 1 (Simple row-wise scan transpose): correctness: 1

func 2 (column-wise scan transpose): correctness: 1

func 3 (using a zig-zag access pattern): correctness: 1

Step 2: Generating memory traces for registered transpose funcs.

Step 3: Evaluating performance of registered transpose funcs (s=5, E=1, b=5)

func 0 (Transpose submission): hits:1766, misses:287, evictions:255

func 1 (Simple row-wise scan transpose): hits:870, misses:1183, evictions:1151

func 2 (column-wise scan transpose): hits:870, misses:1183, evictions:1151

func 3 (using a zig-zag access pattern): hits:1076, misses:977, evictions:945

Summary for official submission (func 0): correctness=1 misses=287

In this example, we have registered four different transpose functions in trans.c. The test-trans

program tests each of the registered functions, displays the results for each, and extracts the results for the

official submission.

Here are some hints and suggestions for working on Part B.

• The test-trans program saves the trace for function i in file trace.fi.2 These trace files are

invaluable performance debugging tools that can help you understand exactly where the hits and

misses for each transpose function are coming from. To debug a particular function, simply run its

trace through the reference simulator with the verbose option:

linux> ./csim-ref -v -s 5 -E 1 -b 5 -t trace.f0

S 68312c,1 miss

L 683140,8 miss

L 683124,4 hit

L 683120,4 hit

L 603124,4 miss eviction

S 6431a0,4 miss

...

2Because valgrind introduces many stack accesses that have nothing to do with your code, we have filtered out all stack

accesses from the trace. This is why we have banned local arrays and placed limits on the number of local variables.

8

• Since your transpose function is being evaluated on a direct-mapped cache, conflict misses are a

potential problem. Think about the potential for conflict misses in your code, especially along the

diagonal. Try to think of access patterns that will decrease the number of these conflict misses.

• When optimizing code, you will often reach a point where changes actually make things worse. To

avoid losing work, again, use svn. Make sure that you have committed your code every time you

reach a new level of performance. If you don’t do this, you will be extremely frustrated at times when

you can’t remember exactly how you got the better result earlier.

5 Putting it all Together

The maximum score for the whole Project 3 is 100, where

• Part A max score = 60 points

• Part B max score = 40 points

We have provided you with a driver program, called ./driver.py, that performs a complete evaluation

of your simulator and transpose code. This is the same program your instructor uses to evaluate your code

for part A and B. The driver uses test-csim to evaluate your simulator, and it uses test-trans to

evaluate your submitted transpose function on the different matrix sizes. Then it prints a summary of your

results and the points you have earned. To run the driver, type:

linux> ./driver.py

The output of our copy of driver.py will be your grade. If it does not work, or your code fails to

compile, you will receive no credit. Test before you commit your final version.

6 Acknowledgements

This assignment was created by the text book authors and their TAs. It has been modified by the CS154

instructors.

9

	Overview
	Motivation
	Part A: Writing a Cache Simulator
	Reference Trace Files
	Description
	Programming Rules
	Evaluation (Part A Max Score = 60 points)
	Working on Part A

	Part B: Optimizing Matrix Transpose
	Description
	Programming Rules
	Evaluation (Part B Max Score = 40 points)
	Working on Part B

	Putting it all Together
	Acknowledgements

