
Composite Pattern

Felicia Jiang
Winter 2019 - OOP 



Why composite?

- Objective: represent part-whole hierarchies
- Objective: conceal differences between compositions of objects and 

individual objects from clients



base class 

derived class: 
Individual object

derived class: 
Composition of objects

Component class contains all the 
methods present in leaf and composite



A graphic example

Circle: Single 
object Triangle, circle: 

Single object(s)

Picture: 
grouped objects

Also a picture: 
single object + picture

aPicture

aCircle aPicture

aCircle aTriangle



A graphic example
aPicture

aCircle aPicture

aCircle aTriangle

- Component → Graphic
- This is the base class both 

composite and leaf inherit 
from

- Composite → Picture
- Has children

- Leaf → Circle, Triangle, etc
- Has no children



override

override



base class 

Component class specifies 
child-management operations that 
both derived classes inherit from 



Summary of implementation concerns

1. Explicit parent references: 

a. parent knows children, child knows parent 

2. Maximize common interface: 

a. component should define as many common operations for Leaf and Composite 

as possible

3. Child management: 

a. addChild, removeChild methods can be defined in Component to fail by default, 

override in Composite class

4. Data structure for tracking children:

a. I chose set, can use tree, linked list, hash map, etc 



Component (Graphic)

● Define as many methods 

common to leaf and composite 

as possible 

● Parent-child references



Composite (Picture)

● Define as many methods 

common to leaf and composite 

as possible 

● Parent-child references



Leaf (Circle, etc)

● Cannot have children

● Inherits child-management 

methods that return nothing


