
cs154: Introduction to Computer Systems
Autumn 2019

Homework 3
(Assigned Oct 17)
Due Oct 22 11:59pm

Submit your work by adding and committing one file into the hw3 directory of your CNETID-cs154-aut-19
svn repository. The file should be named either hw3.txt or hw3.pdf for answers written in a plain ASCII
text file or PDF file, respectively. PDFs of scanned hand-written pages must not exceed 6 megabytes. No
other file formats or filenames are acceptable, and no files besides hw3.txt or hw3.pdf will be graded.
Not following directions will result in losing points.

(1) (10 points)

Manually decompile the following assembly code into two short C functions funcQ() and funcP(),
the prototypes of which are included as comments. You can ignore the .globl directives. Your code
should not use local variables (new variables declared inside the functions); the original C code (before
compilation) did not have any.

You decompile the assembly by using your brain, powered by your understanding of assembly (from lec-
tures and Chapter 3). If asked a similar question during Exam 1 you will not be able to use a computer.
There is no single correct representation of a C function in assembly.

1 .globl _funcQ
2 _funcQ: # long funcQ(long x, long y)
3 imulq $3, %rsi, %rax
4 addq %rdi, %rax
5 ret
6 .globl _funcP
7 _funcP: # long funcP(long r, long s, long t)
8 testq %rsi, %rsi
9 jle foo

10 movq %rdx, %rax
11 movq %rdi, %rdx
12 movq %rax, %rdi
13 callq _funcQ
14 addq %rdx, %rax
15 jmp bar
16 foo:
17 movq %rdi, %rax
18 movq %rsi, %rdi
19 movq %rax, %rsi
20 callq _funcQ
21 addq %rdx, %rax
22 bar:
23 ret

https://classes.cs.uchicago.edu/current/15400-1/svn.html
https://classes.cs.uchicago.edu/current/15400-1/svn.html

(2) (12 points)

Consider the following assembly code:

1 .globl _loop
2 _loop:
3 xorq %rax, %rax
4 movq $3, %rdx
5 foo:
6 movq %rax, %rcx
7 movq %rdx, %rax
8 andq %rdi, %rax
9 orq %rcx, %rax

10 shlq %rsi, %rdx
11 testq %rdx, %rdx
12 jne foo
13 ret

The assembly code was generated by compiling C code with the following overall form:

long loop(long x, long n) {
long result = ___1___;
long mask;
for (mask = ___2___; mask ___3___; mask = ___4___) {
result ___5___;

}
return result;

}

Your task is to fill in the missing parts of the C code to get a program equivalent to the generated assembly
code. Recall that the result of the function is returned in register %rax. You will find it helpful to examine
the assembly code before, during, and after the loop to form a consistent mapping between the registers and
the program variables. The clarity of your answers below may be improved by mentioning assembly line
numbers.

A. Which registers hold program values x, n, result, and mask?
B. What are the initial values of result and mask?
C. What is the test condition for mask?
D. How does mask get updated?
E. How does result get updated?
F. Fill in all the missing parts of the C code, by providing the entire contents of the 1 , 2 , etc blanks.

2

(3) (10 points)

Consider the following C source code, in which the constants R, S, and T have already been declared through
#defines (e.g. “#define R 2”):

int A[R][S][T];
long lkup(long i, long j, long k, int *dest) {

*dest = A[i][j][k];
return sizeof(A);

}

A. Generalize Equation (3.1) of the textbook (page 236 in Ed. 2, page 258 in Ed. 3) to give an expres-
sion for the address &(A[i][j][k]) of element A[i][j][k] in terms of xA = &(A[0][0][0]), L =
sizeof(int), indices i, j, k, and array sizes R, S, T . Your answer may not require all these variables
(xA, i, R, etc.), but it must include L.

B. When compiling the above C code to assembly, the result includes:

1 .globl lkup
2 lkup:
3 movq %rsi, %rax
4 leaq (%rax,%rax,8), %r8
5 imulq $90, %rdi, %rax
6 addq %r8, %rax
7 addq %rdx, %rax
8 movl A(,%rax,4), %edx
9 movq %rcx, %rax

10 movl %edx, (%rax)
11 movq $1440, %rax
12 ret
13 .comm A,1440,64

From the assembly code, determine the values of R, S, and T . To receive full credit you must explain your
answer with reference to the assembly line numbers. Be concise; you should not need more than roughly
100 words.

The three-operand form of imul (line 5) multiplies the value of the two source operands $90 and %rdi
and stores it in the destination operand %rax. It can be used if the first operand is a constant.

The “A” in “movl A(,%rax,4), %edx” on line 8 should be read as an immediate that has a symbolic
rather than an absolute value. Just like the targets of jump instructions have symbolic names that are turned
into numeric values later (e.g. “jle foo”), the address of array A can appear in the assembly. The last
“.comm” line is an assembler directive (rather than an assembly instruction) which indicates the size (1440)
and alignment restrictions (64) of A.

3

