
cs154: Introduction to Computer Systems
Autumn 2019

Homework 6
(Assigned Nov 7)
Due Nov 12 (Tuesday) 11:59pm

Submit answers by committing a file into the hw6 sub-directory of your CNETID-cs154-aut-19 svn repository.
Do not create this directory yourself: an “svn update” at the top level of your checkout will create it. The filename
should be either hw6.txt or hw6.pdf for answers in plain ASCII text, or PDF, respectively. PDFs of scanned
hand-written pages must not exceed 6 megabytes. No other file formats, or filenames are acceptable, and no files
besides hw6.txt or hw6.pdf will be graded. Not following directions will result in losing points.

(1) (16 points)

The textbook Sections 8.1-8.3 cover the difference between things like open, a system call, versus
fopen, a function in C’s standard library. From a C programmer’s standpoint, the distinction is
blurred by how the C standard library also includes thin wrappers (the book calls these “system-
level functions”) around the system calls. For example, compiling a C program on CSIL that calls
open() will produce assembly that includes the instruction “call open”, where that “open”
is a system-level function. Good systems programmers understand, however, that there is also a
distinct underlying open system call.

A. Based on what you learned in Section 8.1, describe (with about 40 of your own words) two
aspects of how in general the execution of system calls differs from execution of library functions
(e.g. execution mode, or what assembly instructions are used to start them).

B. Choosing from the following mix of system calls (system-level functions) and library functions,
accept dup2 exit fclose fread fseek fstat
fork log lseek mallinfo mblen mmap pause
sprintf raise read sbrk shmget signal strpbrk

list four system calls and then list four library functions. For each of your eight choices give a
brief (roughly 10 of your own words) description of its purpose. Feel free to consult man pages or
whatever other online resources you find.

(2) (15 points)

This is a question about how the CPU responds to a divide-by-zero error, which builds on the dis-
cussion of exception handling from lecture.

Suppose that an instruction representing “idivl %ebx” is at address 0x08031000, and that
the address of the exception handler divideByZero is 0xC0015200.

A. Consistent with how it was shown in lecture os1-Exceptions, show the relevant entry in the
exception table built into the hardware.

B. Suppose that %ebx is zero, that %eip is 0x08031000, and the CPU is about to start executing
the current instruction. Describe the subsequent sequence of actions happening on the CPU up
until and including the execution of the first instruction of divideByZero. Include the specific
addresses given above, and how they are used.


