
cs154: Introduction to Computer Systems
Autumn 2019

Homework 9
(Assigned Nov 26)
Due Monday Dec 2nd 11:59pm

Submit your work by committing files in the hw9 sub-directory of your CNETID-cs154-aut-19 svn
repository. The filename should be either hw9.txt or hw9.pdf for answers in plain ASCII text, or PDF,
respectively. PDFs of scanned hand-written pages must not exceed 6 megabytes. Not following directions
will result in losing points.

(1) (16 points)
1 #include "csapp.h"
2 void echo(int connfd);
3
4 void sigchld_handler(int sig)
5 {
6 while (waitpid(-1, 0, WNOHANG) > 0)
7 ;
8 return;
9 }

10
11 int main(int argc, char **argv)
12 {
13 int listenfd, connfd, port;
14 socklen_t clientlen=sizeof(struct sockaddr_in);
15 struct sockaddr_in clientaddr;
16
17 if (argc != 2) {
18 fprintf(stderr, "usage: %s <port>\n", argv[0]);
19 exit(0);
20 }
21 port = atoi(argv[1]);
22
23 Signal(SIGCHLD, sigchld_handler);
24 listenfd = Open_listenfd(port);
25 while (1) {
26 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
27 if (Fork() == 0) {
28 Close(listenfd); /* Child closes its listening socket */
29 echo(connfd); /* Child services client */
30 Close(connfd); /* Child closes connection with client */
31 exit(0); /* Child exits */
32 }
33 Close(connfd); /* Parent closes connected socket (important!) */
34 }
35 }

This question refers to the code in textbook Figure 12.5 (reproduced above), and the corresponding
discussion in lec23-sy1.pptx. Accept() and Close() are just wrappers around system calls
accept() and close() that perform error checking.

Assume that an open file descriptor structure is 50 bytes in the OS, and that 100 clients have
previously connected (i.e. the child processes have terminated). For the two parts below, answer
with a non-negative (≥ 0) number of bytes, and a roughly 10-20 word justification.

A. Suppose the “Close(connfd)” line has been omitted from the code for the parent process.
How large a memory leak has been created by this omission (i.e. how many bytes linger in the OS
without being used)?

B. Now assume we fix the bug from the previous part (so the Close(connfd) is performed
by the parent), but we accidentally delete Close(listenfd) in the child process. If another
100 clients connect with this new configuration, how much memory is leaked?

.

(2) (18 points)

1 #include "csapp.h"
2 #define N 2
3 void *thread(void *vargp);
4
5 char **ptr; /* global variable */
6
7 int main()
8 {
9 int i;

10 pthread_t tid;
11 char *msgs[N] = {
12 "Hello from foo",
13 "Hello from bar"
14 };
15
16 ptr = msgs;
17 for (i = 0; i < N; i++)
18 Pthread_create(& tid, NULL, thread, (void *)&i);
19 Pthread_exit(NULL);
20 }
21
22 void *thread(void *vargp)
23 {
24 int myid = *((int*)vargp);
25 int cnt = 0;
26 printf("[%d]: %s (cnt=%d)\n", myid, ptr[myid], ++cnt);
27 return NULL;
28 }

This question refers to the above modified version of the code in textbook Figure 12.15. Modifica-
tions were made to lines 18, 24, and 25.

Using the analysis from Section 12.4, fill each entry in the following table with “Yes” or “No” for
the code above. In the first column, the notation v.t denotes an instance of variable v residing
on the local stack for thread t, where t is either m (main thread), t0 (peer thread 0), or t1 (peer
thread 1). This is a modification of Practice Problem 12.6.A.

Variable instance Referenced by main
thread?

Referenced by peer
thread 0?

Referenced by peer
thread 1?

cnt.t0
cnt.t1
i.m
msgs.m
myid.t0
myid.t1

(3) (15 points)

Consider the following use of locks/mutexes in two threads in light of the “Mutex lock ordering
rule” from textbook Section 12.7.

Initially: a = 1, b = 1, c = 1, d = 1.
Thread 1: Thread 2:

P(a); P(a);
P(b); V(a);
P(c); P(d);
V(c); P(c);
V(b); P(b);
P(d); V(b);
V(d); V(c);
V(a); V(d);

A. List all pairs of locks/mutexes that Thread 1 can hold, and all pairs of locks/mutexes that
Thread 2 can hold.

B. Is there overlap between the sets of pairs of locks/mutexes? If yes, are the locks/mutexes (within
the pair) locked in the same order?

C. Given your analysis, is there a potential for deadlock (Yes or No)?

