
CMSC 22600
Autumn 2020

Compilers for Computer Languages Handout 1
Sept. 30, 2020

Project Overview

1 Introduction

The project for the course is to implement a small functional programming language, called LangF.
This language is an enrichment of System F (the polymorphic λ-calculus).

The project grade will comprise the bulk of your course grade, and will involve a significant
effort to complete, so it is important that you give it sufficient time and effort.

The project consists of four parts:

1. Scanning and Parsing, which consists of implementing a scanner and parser for the language
that builds a parse-tree representation of the input program.

2. Type Checking, which consists of implementing a type checker for the parse tree that pro-
duces a typed abstract syntax tree (AST).

3. Optimizer, which consists of implementing a conversion from the typed AST to a normal-
ized representation that is suitable for optimization, and the implementation of some simple
optimizations.

4. Optimization and Code Generation, which consists of implementing a closure converter
that lowers the higher-order program to a first-order representation and a code generator that
produces LLVM assembly code.

Each part of the project builds upon the previous parts, but we will provide reference solutions
for previous parts. You will implement the project in the Standard ML programming language and
submission of the project milestones will be managed using Phoenixforge.

You will have two weeks to complete each project (not counting Thanksgiving break). We will
grade whatever code you have submitted at the deadline; late assignments will not be accepted, so
do not leave your work to the last minute.

2 LangF

LangF is a strongly-typed, call-by-value, higher-order, polymorphic, functional programming lan-
guage. The syntax and semantics of LangF are similar to other functional programming languages
(e.g., Standard ML or Haskell), but with many simplifications and a more explicit type system.
LangF does not have type inference, exceptions, or a module system, but it does include mutable
references. Furthermore, LangF has first-class functions, datatypes, and first-class polymorphism.

2.1 Types

LangF supports two primitive types of values: integers (type Int) and strings (type String). In
addition, LangF has datatype-constructed values, function values, and type-function values. The
grammar of types is

Type
::= TypeParams Type
| Type -> Type
| Type (* Type)+

| tyid TypeArgsopt

| tyvar
| (Type)

TypeParams
::= [tyvar (, tyvar)∗]

TypeArgs
::= [Type (, Type)∗]

LangF enforces the convention that type constructor names (tyid) begin with an upper-case letter
and that type variable names (tyvar) begin with a lower-case letter. The -> constructor associates
to the right and has lower precedence than the tuple-type constructor (*), while type abstraction has
the lowest precedence. Some examples:

Int -> Int
[a] a -> a
([a] a -> String) -> [a] List[a] -> String
Int * Int -> Bool

In addition to Int and String, LangF predefines several data types, such as Bool, List, and
Unit. These will be discussed in the Project 2 description.

2.2 Programs

A LangF program is a sequence of top-level definitions.

Program
::= Definition (; Definition)∗

The convention is that the last definition is a function named main that has the type

List[String] -> Int

For example, here is the classic “hello world” program in LangF:

fun main (args : List[String]) -> Int = { print "hello world\n"; 0 }

Executing a LangF program means evaluating each of the declarations (making their definitions
available to the subsequent declarations and expression) and then applying the main function to

2

the command-line arguments. The result of the program (an integer) is used as the exit status;
traditionally a non-zero value is used to signal an error.

Here is a slightly more interesting program that computes 5! by defining the fact function
followed by the expression fact 5, which is returned as the exit status.

// compute factorial of n
fun fact (n : Int) -> Int =

if n == 0 then 1 else n * fact (n - 1);
/* main function */
fun main (args : List[String]) -> Int = fact 5

Note that comments are either single-line comments that start with // or are block comments brack-
eted by /* and */. Block comments may be nested (as in SML).

2.3 Top-level definitions

There two kinds of top-level definitions in LangF: definitions of types and definitions of values.
Type definitions are further divided into simple type definitions that are used to define a synonym
(or alias) for a type and data-type definitions that are used to define data structures, while value
definitions include function definitions, let bindings, and expressions.

Definition
::= type tyid TypeParamsopt = Type
| data tyid TypeParamsopt = ConDef (| ConDef)∗

| ValBind

ConDef
::= conid (of Type)opt

ValBind
::= fun varid FunParam+ -> Type = Exp
| let SimplePat (: Type)opt = Exp
| Exp

FunParam
::= TypeParams
| (varid : Type)

We describe these various forms below.

2.3.1 Simple type definitions

A LangF type declaration introduces another name for a type; the new type name may be used in
subsequent declarations and expressions. For example, we might wish to abbreviate the type of a
curried integer comparison function (a function from two integers to a boolean):

type IntCmp = Int -> Int -> Bool

Note that a type declaration is introduced with the type keyword and that type names are written
with a leading upper-case letter.

3

A LangF type declaration may also include type parameters, which must be instantiated at
each use of the new type name. For example, we might wish to abbreviate the type of a general
comparison function (a function from two values of the same (but any) type to a boolean) and then
define the type of an integer comparison function in terms of the general comparison function:

type Cmp [a] = a -> a -> Bool
type IntCmp = Cmp [Int]

Note that type parameters and type arguments are written in [. . .] brackets and, as in function
parameters, that type variables are written with a leading lower-case letter. Multiple type parameters
and type arguments are separated by ,s:

type BinOp [’a, ’b] = ’a -> ’a -> ’b
type Cmp [’a] = BinOp [’a, Bool]
type IntCmp = Cmp [Int]

Unlike polymorphic functions, a type name cannot be partially applied; at every use of the type
name, all type parameters must be instantiated.

2.3.2 Data-type definitions

A LangF datatype declaration introduces a new type along with constructors; the constructors pro-
vide the means to create values of the new type and to take apart values of the new type. Each
constructor is declared with the types of its argument(s). A very simple datatype declaration is one
for defining the relationship between values in a total order:

data Order = Less | Equal | Greater

This definition introduces both new type (Order) and three data constructors (Less, Equal, and
Greater). Note that constructor names are written with a leading upper-case letter. A slightly
more complicated datatype declaration is one that represents publications, which can be either a
book (with an author and a title) or an article (with an author, a title, and a journal name):

data Publication
= Book of String * String
| Article of String * String * String

A LangF datatype declaration may also include type parameters (yielding a polymorphic datatype),
which must be instantiated at each use of the new type name. The types of a constructor’s argu-
ments(s) may use the type parameters. For example, the Pair datatype takes two type parameters
and introduces a constructor with two arguments of the types of the parameters:

data Pair [a, b] = Pair of a * b

2.3.3 Function definitions

Function definitions introduce functions that are parameterized over types and values. Functions
may be recursive, but LangF does not support mutually recursive functions directly. For example,
here is a recursive function that computes the length of a list:

fun length [a] (xs : List[a]) -> Int =
case xs of

4

{ _::r => 1 + length [a] r }
{ Nil => 0 }
end

A defining characteristic of LangF (taken from System F) is polymorphism or type abstraction.
The prototypical example of a polymorphic function is the identity function, which simply returns
its argument (without performing any computation on it). Thus, the behavior of the function is the
same for all possible types of its argument (and result). The function declaration for the identity
function introduces one function parameter (a type variable) to be used as the type of the second
function parameter and the result type:

fun id [a] (x : a) -> a = x;

Note that type variables are written with a leading lower-case letter.

Like (ordinary) functions, polymorphic functions in LangF are first-class: they may be nested,
taken as arguments, and returned as results. To use a polymorphic function, it must be applied to a
type, rather than to an expression. The result of applying a polymorphic function to a type is a value
having the type produced by instantiating the type variable with the applied type. For example, the
result of applying the identity function to the integer type is a function having the type Int ->Int:

fun id [a] (x : a) -> a = x;
let _ : [a] a -> a = id;
let _ : Int -> Int = id [Int];
let zero : Int = id [Int] 0;

Note that the polymorphic function type is written using the syntax

[tyvar, . . ., tyvar] Type

Also note that the type variable in a function parameter and in a polymorphic function type is a
binding occurrence of the type variable; two polymorphic function types are equal if each of the
bound type variables in one can be renamed to match the bound type variables in the other:

fun id [a] (x : a) -> a = x;
let _ : [b] -> b -> b = id;
let _ : [c] -> c -> c = id;

Project 2 will discuss this aspect in more detail.

In function declarations, type variable and value parameters may be mixed, but a type variable
parameter must occur before any use of the type variable in the types of value parameters.

fun revApp [a] (x : a) [b] (f : a -> b) -> b = f x;
let _ : [b] (Int -> b) -> b = revApp [Int] 1;
fun double (y : Int) -> Int = 2 * y;
let two = revApp [Int] 1 [Int] double;

The above examples also demonstrate that a function with more than one parameter (either type
variable parameters or value parameters) is a curried function and can be partially applied to types
or expression arguments.

5

2.3.4 Value definitions

In addition to function definitions, LangF allows let binding of value identifiers and expressions1

as top-level definitions. Let bindings introduce new value identifiers that are bound to the result of
evaluating the right-hand-side expression.

2.4 Expressions

LangF is an expression language, which means that all computation is done by expressions (there
are no statements). Furthermore, LangF is a call-by-value language, which means that (almost) all
sub-expressions are evaluated to values before the expression itself is evaluated.

2.4.1 Conditionals

LangF provides a conditional expression with the syntax

if Exp then Exp else Exp

and the expected semantics. The conditional must have the builtin type Bool and the arms of the
conditional must have the same type. The conditional expression is the lowest-precedence expres-
sion form.

LangF also has two infix conditional operators: “||” and “&&”.

2.4.2 Binary expressions

LangF defines a small collection of infix binary operators as described in the following table:

Operator Associativity Description
:= Left Assignment
|| Left Conditional “or-else”
&& Left Conditional “and-also”
== Left Integer equality relation
!= Left Integer inequality relation
< Left Integer less-than relation
<= Left Integer less-than-or-equal relation
:: Right List cons operator
ˆ Left String concatenation operator
+ Left Integer addition operator
- Left Integer subtraction operator
* Left Integer multiplication operator
/ Left Integer division operator
% Left Integer modulo operator

The operators are listed in order of increasing precedence, with horizontal lines separating the dif-
ference precedence levels.

1Expressions can be thought of as a degenerate form of value binding.

6

2.4.3 Unary expressions

LangF has two unary operators: negation (“-”) and dereferencing (“!”). Unary expressions bind
more tightly than binary operators, but less than function application (e.g., the expression “- f x”
is parsed as “- (f x)”).

2.4.4 Application

There are two forms of application expressions in LangF: value application and type application.
Both of these forms associate to the left and have higher precedence than unary and binary operators.
For example:

id [Int] 0
foldl [Int, Int]
fact (n-1)
reverse [Bool * Bool] ((True, False) :: Nil[Bool * Bool])

2.4.5 Variables and constants

Variables, data constructors, numbers, and string literals are all expressions in LangF.

2.4.6 Tuple expressions

LangF supports tuples of values using the syntax

((Exp (, Exp)∗)opt)

The expression () is shorthand for the Unit constructor; the expression (e) is just the expression
e, where the parentheses have been used to make precedence and associativity explicit; and the
expression (e1, e2, . . ., en) defines an n-ary tuple.

2.4.7 Blocks

A block introduces a nested scope that can include function and value bindings. The

{ (ValBind ;)+ Exp }

LangF follows standard lexical scoping rules: bound identifiers have a scope that consists of the
rest of the block (the scope of a function includes its body), but subsequent definitions of the same
identifier will override (or shadow) the outer definition.

2.4.8 Case expressions

LangF provides case expressions with simple (one-level) patterns. For example, the body of the
reverse function from above is a case on a list:

7

case xs of
{ _::r => 1 + length [a] r }
{ Nil => 0 }
end

Note that polymorphic constructors in patterns are not applied to types, since one can use the argu-
ment type of the case to determine how to instantiate the polymorphism.

2.4.9 References

Similar to SML, LangF provides mutable references. The builtin function newRef creates a refer-
ence cell, the := operator can be used to assign to a reference, and ! is used to extract a reference’s
value.

For example, here is an imperative implementation of the factorial function:

fun fact (n : Int) -> Int = {
let res : Ref[Int] = newRef [Int] 1;
fun lp (i : Int) -> Unit = if (i < n)

then { res := !res * i; lp (i+1) }
else ();

lp (2);
!res

}

There are some subtleties with respect to the interaction between references and polymorphism.
For example, consider the following expression:

{ let r : [a] Ref[List[a]] = newRef [a] (Nil [a]);
r[Bool] := true :: !r[Bool];
r[Int] := 1 :: !r[Int];
r

}

As will be discussed in Project 2, this program type checks, which might lead one believe that it
has a runtime type error (i.e., mixing booleans and integers in the same list). In fact, it does not,
because the type abstraction in the binding of r behaves like a λ-abstraction at runtime. Thus, the
expressions “r [Bool]” and “r [Int]” evaluate to different reference cells.

The semantically equivalent program in SML would be

let r = fn () => ref nil
in

r() := true :: !(r());
r() := 1 :: !(r());
r

end

where we have used unit for the type parameters and arguments.

8

3 Project schedule

Important note: You are expected to submit code that compiles and that is
well documented. Points for project code are assigned 30% for coding style
(documentation, choice of variable names, and program structure), and 70%
for correctness. Code that does not compile will not receive any points for
correctness.

The tentative schedule for the project assignments is as follows:

Assigned Project description Due date
October 7 Parser & Scanner Tuesday, October 20
October 21 Type Checker Tuesday, November 3
November 4 Optimizer Tuesday, November 17
November 18 Code Generator Tuesday, December 8

All project assignments will be due at 23:59 Chicago Time. Late assignments are not accepted,
so do not leave your work to the last minute.

Document history

October 18, 2020 Added integer inequality (!=) to the binary-operator table.

October 18, 2020 Fixed inconsistent use of valid (should be varid).

October 13, 2020 Fixed syntax of programs to require a semicolon between definitions.

October 5, 2020 Changed string concatenation operator to “ˆ” and added missing conditional op-
erators to precedence table.

October 1, 2020 Fixed grammar rule for Program non-terminal and added hello-world example.

September 30, 2020 Original version

9

