
update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

"a" :: ("b" :: ("c" :: ("d" :: ("e" :: []))))
in =

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

(::) "a" ((::) "b" ((::) "c" ((::) "d" ((::) "e" []))))
in =

 type List a
 ~= []
 | (::) a (List a)

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X"

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"
x = "a" rest = in_b

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

x = "a" rest = in_b

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

"b" update in_c 0 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

"b" update in_c 0 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

 xs = in_c i = 0 y = "X"

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

"b" update in_c 0 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

 xs = in_c i = 0 y = "X"
x = "c" rest = in_d

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

"b" update in_c 0 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

 xs = in_c i = 0 y = "X"
x = "c" rest = in_d

"X" in_d

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

"a"
out_a

"b"
out_b

"X"
out_cout =

in_d

update in_a 2 "X" xs = in_a i = 2 y = "X"

"a" update in_b 1 "X"

"b" update in_c 0 "X"

x = "a" rest = in_b

 xs = in_b i = 1 y = "X"
x = "b" rest = in_c

 xs = in_c i = 0 y = "X"
x = "c" rest = in_d

"X" in_d

let
 in = ["a", "b", "c", "d", "e"]
 out = update in 2 "X"
in
 ...

"a"
in_a

"b"
in_b

"c"
in_c

"d"
in_d

"e" []
in_ein =

update : List a -> Int -> a -> List a
update xs i y =
 case (xs, i) of
 ([], _) ->
 []
 (x::rest, 0) ->
 y :: rest
 (x::rest, _) ->
 x :: update rest (i-1) y

"a"
out_a

"b"
out_b

"X"
out_cout =

Three cons-cells
allocated

Two cons-cells
shared

