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Syntactical Analysis (Parsing)

« Goal: Convert the token stream from the scanner into an an
abstract syntax tree and to verify the structure of the program is
valid.

* Input source code: ;¢ (x==y) x=45;

 Character Stream:

=

F4l ]

T IKEER

« Token Stream:

IF |LPAREN| IDx) | EQ | ID(y) |RPAREN]| ID(x) |ASSIGN|INT(45)|SCOLON

« Abstract Syntax Tree
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Syntactical Analysis (Parsing)

« Determines whether a program (or sentence) is
grammatically well-formed and identifies the function for

each component.
“| loaned her my pen”
(e (=)
“loaned” object: her

Noun
phrase
possessive
adjective:
my
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What Syntactical Analysis does not do?

* Type checking, variable declarations and initializations,
function declarations, etc.

var a int
b:=10
c = foo(a)

« Deferred until semantic analysis
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Specification of Language Syntax

« Goal: How can we specify the language syntax precisely
and conveniently to make it easy to parse source code?

« Lexical Analysis: We used regular expressions to
describe tokens

- Made it easy to convert them to DFAs and simulated
the DFAs to produce the tokens

 Why don’t we just use regular expressions to specify
programming language syntax?

TTTTTTTTTTTTTTT
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Regular Expressions for Parsing?

« What if we wanted to add expression summation to the language
digits = [0-9]+
sum = (digits “+7)* digits
- Defines sums of the form “34+93+1234"
 Now let's add parentheses to the language?
digits = [0-9]+
sum = expr “+” expr
expr = digits | “(" sum “)”
« But all of theses are just abbreviations so it really looks like

digits = [0-9]+
expr = digits | “(" expr “+" expr “)”
* Now expand again: o Problem!! Regular expressions must
expr = dIgItS | be finite and have no recursive structure

“(“ (digits | “(“ expr “+” expr “)")
“+7 (digits | “(“ expr “+” expr “)") )

MPCS 51300 - Compilers 7 CHICAGO | messens mRosran e

7




Limits to Regular Expressions

 Languages are not regular and cannot be described by
regular expressions.

- DFA has only a finite number of states so adding
parenthesis would requiring some form of counting
which is not doable with regular expressions.

 We need a way to specify nesting or specifying a
recursive structure for various language construct?
Grammars!
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Grammars

« A grammar is a precise, and declarative specification of syntactic
structure of programming languages

The format (i.e., notation) of grammars is normally specified using
Extended Backus-Naur Form (EBNF)

- Aset of rewriting rules (also called productions) |
Stmt -> if Expr then Stmt else Stmt e odutions.
Expr -> Expr + Expr | Expr * Expr | (Expr) | id

- A set of non-terminals (appears on the LHS of a production)

and a set of terminals (token from the alphabet)

non-terminals = Stmt, Expr
terminals = if, then, else, +, *, (, ), id

- Can specify lists using recursion
Block -> { Stmt-list }
StmtBlock -> Stmt | Stmt ; StmtBlock
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Context-Free Grammars

« Regular expressions with recursion (i.e., more expressive
than regular expressions)
« Defined by the following (T,N,P,S):
- T is set of terminals
N is set of non-terminals

P is set of productions (rewriting rules)
S is the start symbol (belongs to N)

 Example:

G=(T,N,P,S) EBNF
T={+7%()id}
N ={E} E->E+E|E*E|(E)]id
P={E->E+E,

E>E*E E->(E),E->id}
S=E

. = THE UNIVERSITY OF
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CFG Example

e Sum grammar on integers

S->E+S|E

E->INT|(S)
S>E+S 4 productions
S->E 2 non-terminals (S,E)
E -> INT 4 terminals: (, ), +, INT
E->(S) Start symbol S

« Each context-free grammar defines a context-free
language L, which contains all sentences of terminal
symbols derived from repeated application of
productions from the starting symbol.

- Example language sentences from the Sum grammar
(1+2),2,4+21, ((3+3)+5)

TTTTTTTTTTTTTTT MASTERS PROGRAM
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Derivations

 We can show if a sentence is part of a language by
performing a derivation

- Starting with the start symbol, repeatedly replace a
non-terminal (using a production) on is right hand

side.

E=>E*E CFG
=>id + E E->E;I-E
=>id * (E + E) E->E7E
=> id * (id + E) E->(E)
=> id * (id + id) E->id

* The intermediate forms (id + E, id * (id + E) , etc.)
always contain non-terminals.
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Derivation Order

« (Can choose to apply productions in any order.

- For some arbitrary strings a, and y and a production A -> 3,

a single step of a derivation is
oA v => afy (substitute 3 for an occurrence of A)

« Two standard orders: leftmost derivation and rightmost derivation
- Leftmost derivation: at each step, the leftmost non-terminal
Is replaced E=>E*E
=>id + E
=>id * id
- Rightmost derivation: at each step, the rightmost non-
terminal is replaced E->E*E

=>E +id
=>id * id

MPCS 51300 - Compilers 13 CHICAGO | messens mRosran e



Derivation Example

S->E+S|E
E->INT|(S)

« Derive ((34+3)+4)+9

Left-most derivation

S =>E+S
>(S) +S
>(E+S)+S
>((S)+8) +S
((E+S) +S)+S
=>((34+S) + S) + S

((34+E) +S)+S

>((34+3) +S) + S

> ((34+3) +E) + S

> ((34+3) +4)+ S

> ((34+3) +4) + E

> ((34+3) +4) + 0

Right-most derivation

S =>E+S
=>E+E
=>E+9
=>(S)+9
=>(E+S)+9
=>(E+E)+9
=>(E+4)+9
=>((S)+4)+9
=>((E+S)+4)+9
=>((E+E)+4)+9
=>((E+3)+4)+9
=>((34+3)+4)+9
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Derivation to Parse Tree

2
3
;
O,

« Aparse tree is a tree representation of a derivation

(34 + 5) + 9 derivation
S =>E+S (7//

=>(8)+3S

®

0,

;ﬁi;is S?
?

®

> (
> (
>(34+E)+S
> (3
> (
> (

e

4+5)+S

34 +5)+E
34 + 5) + 9 O Leaf Node

O Internal Node

» Leaves of a parse tree are terminals and and internal nodes are non-terminals.
- In-order traversal yields a sentence from the language
- Non information about order of derivation steps (although we used left-most in
the above example)
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Parse Tree vs. Abstract Syntax Tree

 Aparse tree is also known as “concrete syntax”

« AnAST is similar to a parse tree but discards/abstracts
out unnecessary information

Parse Tree/ Concrete Syntax Abstract Syntax Tree (AST)

O 0
oRO & —¢ Q@
® @R ®
O Loaf Nod
®

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 16 B CHICAGO | MesTars mrose e



Ambiguous Grammars

« A grammar is ambiguous if it can derive a sentence with two different parse trees
(i.e., there’s more than one leftmost (or rightmost) derivation).

- To see this, lets look at this grammar E-> E+ E|E * E | INT

» Consider the expression: 1 +2 * 3

Leftmost Parse Tree Rightmost Parse Tree

O :
@Q@G@ @%%%
® o ®

O,
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Ambiguous Grammar

« Different parse trees will evaluate to different results.

Leftmost AST Rightmost AST
o ¢ 0

:7 =9
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How to Fix an Ambiguous Grammar?

« Usually can eliminate ambiguity by rewriting grammar to
iInclude additional rules and allowing recursion only on

the right or left
E for Expression
E>E+T T->T*F F->INT T for Term
E->T T->F F for Factor

« Make * bind higher than + (i.e., * has higher precedence
than +)

- 1+2*3means1+ (2*3)insteadof (1+2)*3
- Build grammar from highest to lowest precedence

« Make the grammar use (right or left) recursion. In this
case we use left-recursion -> left-associativity

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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How to Fix an Ambiguous Grammar?

E for Expression
E->E+T T->T*F F->INT T for Term

E->T T->F F for Factor

Leftmost and Rightmost Parse Tree

Jo)
@9

7

®

MPCS 51300 - Compilers 20 CHICAGO | messens mRosran e

At-home exercise:
Write out the derivation

@ @ Q? steps for both leftmost
and rightmost to see
how this tree was

@ @ produced.




Parsing

« Aparser is a program that given a sentence constructs a
derivation for that sentence

- If it can construct a derivation then it will accept the
sentence as part of the language; otherwise error.

- Parsers read their input from left-to-right but may construct
the parse tree differently.

« Top-down parsers - construct the tree from root to leaves
- Algorithms - recursive descent, predictive parsing, LL(1)
« Bottom-down parsers - construct the tree from leaves to root
- Algorithms - shift-reduce, LR, SLR, LALR

- LR algorithms are the most commonly used parsing
algorithm in modern compilers.
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Top-Down Parsing

« Construct parse tree by starting at the start symbol and
“‘guess” at derivation step.

- We can use the next input token to guide in guessing

 We can implement top-down parsing using recursive
descent; however before we do this we must modify the
grammar to be right recursive

Left Recursive Grammar Right Recursive Grammar
E>E+T T->T*F F->INT E->TFE T->FT F -> INT
E->T T->F EE->+TE T->*FT

E'->¢ T->¢

* Most top-down parsing algorithms don’t handle left
recursion very well.
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Demo: Recursive Decent Parser

E>TFE T->FT F->INT
EE>+TE T->*FT
E'->¢ T->¢
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