MPCS 51300 - Compilers iyt aaie
M3: Syntactical Analysis (Parsers)

by

Lamont Samuels

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit

permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials

];)or; ggpv[:'gflt educational purposes, provided this copyright notice is E{hmiwchlag ’ masreRs procRaM _

Agenda

Syntactical analysis overview

Formal grammers: CFG

Practical issues: ambiguity, left v. right recursion
Top-down parsing

MPCS 51300 - Compilers 2 E'ﬁ_‘i}’l&xgg ’ MASTERS PROGRAM

IN COMPUTER SCIENCE

Syntactical Analysis (Parsing)

« Goal: Convert the token stream from the scanner into an an
abstract syntax tree and to verify the structure of the program is
valid.

* Input source code: ;¢ (x==y) x=45;

 Character Stream:

=

F4l]

T IKEER

« Token Stream:

IF |LPAREN| IDx) | EQ | ID(y) |RPAREN]| ID(x) |ASSIGN|INT(45)|SCOLON

« Abstract Syntax Tree

MPCS 51300 - Compilers 3 CHICAGO | messens mRosran e

Syntactical Analysis (Parsing)

« Determines whether a program (or sentence) is
grammatically well-formed and identifies the function for

each component.
“| loaned her my pen”
(e (=)
“loaned” object: her

Noun
phrase
possessive
adjective:
my

. o THE UNIVERSITY OF
MPCS 51300 - Compilers 4 CHICAGO | R ce

What Syntactical Analysis does not do?

* Type checking, variable declarations and initializations,
function declarations, etc.

var a int
b:=10
c = foo(a)

« Deferred until semantic analysis

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 5 B CHICAGO | MesTars mrose e

Specification of Language Syntax

« Goal: How can we specify the language syntax precisely
and conveniently to make it easy to parse source code?

« Lexical Analysis: We used regular expressions to
describe tokens

- Made it easy to convert them to DFAs and simulated
the DFAs to produce the tokens

 Why don’t we just use regular expressions to specify
programming language syntax?

TTTTTTTTTTTTTTT

MPCS 51300 - Compilers 6 CHICAGO | et rRosRAN

Regular Expressions for Parsing?

« What if we wanted to add expression summation to the language
digits = [0-9]+
sum = (digits “+7)* digits
- Defines sums of the form “34+93+1234"
 Now let's add parentheses to the language?
digits = [0-9]+
sum = expr “+” expr
expr = digits | “(" sum “)”
« But all of theses are just abbreviations so it really looks like

digits = [0-9]+
expr = digits | “(" expr “+" expr “)”
* Now expand again: o Problem!! Regular expressions must
expr = dIgItS | be finite and have no recursive structure

“(“ (digits | “(“ expr “+” expr “)")
“+7 (digits | “(“ expr “+” expr “)"))

MPCS 51300 - Compilers 7 CHICAGO | messens mRosran e

7

Limits to Regular Expressions

 Languages are not regular and cannot be described by
regular expressions.

- DFA has only a finite number of states so adding
parenthesis would requiring some form of counting
which is not doable with regular expressions.

 We need a way to specify nesting or specifying a
recursive structure for various language construct?
Grammars!

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 8 B CHICAGO | MesTars mrose e

Grammars

« A grammar is a precise, and declarative specification of syntactic
structure of programming languages

The format (i.e., notation) of grammars is normally specified using
Extended Backus-Naur Form (EBNF)

- Aset of rewriting rules (also called productions) |
Stmt -> if Expr then Stmt else Stmt e odutions.
Expr -> Expr + Expr | Expr * Expr | (Expr) | id

- A set of non-terminals (appears on the LHS of a production)

and a set of terminals (token from the alphabet)

non-terminals = Stmt, Expr
terminals = if, then, else, +, *, (,), id

- Can specify lists using recursion
Block -> { Stmt-list }
StmtBlock -> Stmt | Stmt ; StmtBlock

MPCS 51300 - Compilers 9 CHICAGO | messens mRosran e

Context-Free Grammars

« Regular expressions with recursion (i.e., more expressive
than regular expressions)
« Defined by the following (T,N,P,S):
- T is set of terminals
N is set of non-terminals

P is set of productions (rewriting rules)
S is the start symbol (belongs to N)

 Example:

G=(T,N,P,S) EBNF
T={+7%()id}
N ={E} E->E+E|E*E|(E)]id
P={E->E+E,

E>E*E E->(E),E->id}
S=E

. = THE UNIVERSITY OF
MPCS 51300 - Compilers 10 B CHICAGO | MesTars mrose e

CFG Example

e Sum grammar on integers

S->E+S|E

E->INT|(S)
S>E+S 4 productions
S->E 2 non-terminals (S,E)
E -> INT 4 terminals: (,), +, INT
E->(S) Start symbol S

« Each context-free grammar defines a context-free
language L, which contains all sentences of terminal
symbols derived from repeated application of
productions from the starting symbol.

- Example language sentences from the Sum grammar
(1+2),2,4+21, ((3+3)+5)

TTTTTTTTTTTTTTT MASTERS PROGRAM

MPCS 51300 - Compilers 11 CHICAGO | et rRosRAN

Derivations

 We can show if a sentence is part of a language by
performing a derivation

- Starting with the start symbol, repeatedly replace a
non-terminal (using a production) on is right hand

side.

E=>E*E CFG
=>id + E E->E;I-E
=>id * (E + E) E->E7E
=> id * (id + E) E->(E)
=> id * (id + id) E->id

* The intermediate forms (id + E, id * (id + E) , etc.)
always contain non-terminals.

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 12 B CHICAGO | MesTars mrose e

Derivation Order

« (Can choose to apply productions in any order.

- For some arbitrary strings a, and y and a production A -> 3,

a single step of a derivation is
oA v => afy (substitute 3 for an occurrence of A)

« Two standard orders: leftmost derivation and rightmost derivation
- Leftmost derivation: at each step, the leftmost non-terminal
Is replaced E=>E*E
=>id + E
=>id * id
- Rightmost derivation: at each step, the rightmost non-
terminal is replaced E->E*E

=>E +id
=>id * id

MPCS 51300 - Compilers 13 CHICAGO | messens mRosran e

Derivation Example

S->E+S|E
E->INT|(S)

« Derive ((34+3)+4)+9

Left-most derivation

S =>E+S
>(S) +S
>(E+S)+S
>((S)+8) +S
((E+S) +S)+S
=>((34+S) + S) + S

((34+E) +S)+S

>((34+3) +S) + S

> ((34+3) +E) + S

> ((34+3) +4)+ S

> ((34+3) +4) + E

> ((34+3) +4) + 0

Right-most derivation

S =>E+S
=>E+E
=>E+9
=>(S)+9
=>(E+S)+9
=>(E+E)+9
=>(E+4)+9
=>((S)+4)+9
=>((E+S)+4)+9
=>((E+E)+4)+9
=>((E+3)+4)+9
=>((34+3)+4)+9

MPCS 51300 - Compilers

14

RRRRRRRRRRRRRR

Derivation to Parse Tree

2
3
;
O,

« Aparse tree is a tree representation of a derivation

(34 + 5) + 9 derivation
S =>E+S (7//

=>(8)+3S

®

0,

;ﬁi;is S?
?

®

> (
> (
>(34+E)+S
> (3
> (
> (

e

4+5)+S

34 +5)+E
34 + 5) + 9 O Leaf Node

O Internal Node

» Leaves of a parse tree are terminals and and internal nodes are non-terminals.
- In-order traversal yields a sentence from the language
- Non information about order of derivation steps (although we used left-most in
the above example)

Feiod THE UNIVERSITY OF

MPCS 51300 - Compilers 15 CHICAGO

MASTERS PROGRAM
IN COMPUTER SCIENCE

Parse Tree vs. Abstract Syntax Tree

 Aparse tree is also known as “concrete syntax”

« AnAST is similar to a parse tree but discards/abstracts
out unnecessary information

Parse Tree/ Concrete Syntax Abstract Syntax Tree (AST)

O 0
oRO & —¢ Q@
® @R ®
O Loaf Nod
®

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 16 B CHICAGO | MesTars mrose e

Ambiguous Grammars

« A grammar is ambiguous if it can derive a sentence with two different parse trees
(i.e., there’s more than one leftmost (or rightmost) derivation).

- To see this, lets look at this grammar E-> E+ E|E * E | INT

» Consider the expression: 1 +2 * 3

Leftmost Parse Tree Rightmost Parse Tree

O :
@Q@G@ @%%%
® o ®

O,

. E THE UNIVERSITY O
MPCS 51300 - Compilers 17 CHICAGO | R ce

Ambiguous Grammar

« Different parse trees will evaluate to different results.

Leftmost AST Rightmost AST
o ¢ 0

:7 =9

MPCS 51300 - Compilers 18 CHICAGO | messens mRosran e

How to Fix an Ambiguous Grammar?

« Usually can eliminate ambiguity by rewriting grammar to
iInclude additional rules and allowing recursion only on

the right or left
E for Expression
E>E+T T->T*F F->INT T for Term
E->T T->F F for Factor

« Make * bind higher than + (i.e., * has higher precedence
than +)

- 1+2*3means1+ (2*3)insteadof (1+2)*3
- Build grammar from highest to lowest precedence

« Make the grammar use (right or left) recursion. In this
case we use left-recursion -> left-associativity

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MPCS 51300 - Compilers 19 B CHICAGO | MesTars mrose e

How to Fix an Ambiguous Grammar?

E for Expression
E->E+T T->T*F F->INT T for Term

E->T T->F F for Factor

Leftmost and Rightmost Parse Tree

Jo)
@9

7

®

MPCS 51300 - Compilers 20 CHICAGO | messens mRosran e

At-home exercise:
Write out the derivation

@ @ Q? steps for both leftmost
and rightmost to see
how this tree was

@ @ produced.

Parsing

« Aparser is a program that given a sentence constructs a
derivation for that sentence

- If it can construct a derivation then it will accept the
sentence as part of the language; otherwise error.

- Parsers read their input from left-to-right but may construct
the parse tree differently.

« Top-down parsers - construct the tree from root to leaves
- Algorithms - recursive descent, predictive parsing, LL(1)
« Bottom-down parsers - construct the tree from leaves to root
- Algorithms - shift-reduce, LR, SLR, LALR

- LR algorithms are the most commonly used parsing
algorithm in modern compilers.

MPCS 51300 - Compilers 21 CHICAGO | messens mRosran e

Top-Down Parsing

« Construct parse tree by starting at the start symbol and
“‘guess” at derivation step.

- We can use the next input token to guide in guessing

 We can implement top-down parsing using recursive
descent; however before we do this we must modify the
grammar to be right recursive

Left Recursive Grammar Right Recursive Grammar
E>E+T T->T*F F->INT E->TFE T->FT F -> INT
E->T T->F EE->+TE T->*FT

E'->¢ T->¢

* Most top-down parsing algorithms don’t handle left
recursion very well.

22 TTTTTTTTTTTTTTT MASTERS PROGRAM

MPCS 51300 - Compilers CHICAGO | et rRosRAN

Demo: Recursive Decent Parser

E>TFE T->FT F->INT
EE>+TE T->*FT
E'->¢ T->¢

TTTTTTTTTTTTTTT MASTERS PROGRAM

MPCS 51300 - Compilers 23 CHICAGO ‘ IN COMPUTER SCIENCE

