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Agenda

• Syntactical analysis overview 

• Formal grammers: CFG  

• Practical issues: ambiguity, left v. right recursion 

• Top-down parsing 
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Syntactical Analysis (Parsing)
• Goal: Convert the token stream from the scanner into an an 

abstract syntax tree and to verify the structure of the program is 
valid. 


• Input source code: 


• Character Stream: 


• Token Stream: 


• Abstract Syntax Tree
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if (x==y) x=45;

I f ( x = = y ) x = 45 ;

IF LPAREN ID(x) EQ ID(y) RPAREN ID(x) ASSIGN INT(45) SCOLON

IF

==

ID(X) ID(Y)

ASSIGN

ID(X) INT(45)
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Syntactical Analysis (Parsing)

• Determines whether a program (or sentence) is 
grammatically well-formed and identifies the function for 
each component.  
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“I loaned her my pen”
Sentence

Subject: 
“I”

Verb: 
“loaned”

Indirect 
object: her Object

Noun 
phrase

possessive 
adjective: 

my
Noun: pen
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What Syntactical Analysis does not do? 

• Type checking, variable declarations and initializations, 
function declarations, etc. 


• Deferred until semantic analysis 
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var a int 

b := 10 

c = foo(a)



MPCS 51300 - Compilers

Specification of Language Syntax

• Goal: How can we specify the language syntax precisely 
and conveniently to make it easy to parse source code? 


• Lexical Analysis: We used regular expressions to 
describe tokens

- Made it easy to convert them to DFAs and simulated 

the DFAs to produce the tokens 


• Why don’t we just use regular expressions to specify 
programming language syntax? 
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Regular Expressions for Parsing?

• What if we wanted to add expression summation to the language


- Defines sums of the form “34+93+1234”

• Now let’s add parentheses to the language? 


• But all of theses are just abbreviations so it really looks like


• Now expand again:
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digits = [0-9]+

sum = (digits “+”)* digits

digits = [0-9]+

sum = expr “+” expr

expr = digits | “(“ sum “)”

digits = [0-9]+

expr = digits | “(“ expr “+” expr “)”

expr = digits |  
“(“ (digits | “(“ expr “+” expr “)”) 

          “+” (digits | “(“ expr “+” expr “)”) “)”

Problem!! Regular expressions must  
be finite and have no recursive structure 
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Limits to Regular Expressions

• Languages are not regular and cannot be described by 
regular expressions.  

- DFA has only a finite number of states so adding 

parenthesis would requiring some form of counting 
which is not doable with regular expressions.


• We need a way to specify nesting or specifying a 
recursive structure for various language construct? 
Grammars!
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Grammars 

• A grammar is a precise, and declarative specification of syntactic 
structure of programming languages 


• The format (i.e., notation) of grammars is normally specified using 
Extended Backus-Naur Form (EBNF) 


- A set of rewriting rules (also called productions) 


- A set of non-terminals (appears on the LHS of a production) 
and a set of terminals (token from the alphabet)


- Can specify lists using recursion 
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non-terminals = Stmt, Expr 
terminals = if, then, else, +, *, (, ), id 

Block ->  { Stmt-list } 

StmtBlock -> Stmt | Stmt ; StmtBlock

Stmt -> if Expr then Stmt else Stmt 

Expr -> Expr + Expr | Expr * Expr |  (Expr ) | id

Vertical bar is shorthand for 
multiple productions
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Context-Free Grammars

• Regular expressions with recursion (i.e., more expressive 
than regular expressions) 


• Defined by the following (T,N,P,S):

- T is set of terminals 

N is set of non-terminals 
P is set of productions (rewriting rules) 
S is the start symbol (belongs to N)


• Example:  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G=(T,N,P,S) 
T = { +, *, (, ), id } 
N = {E } 
P = { E -> E + E,  
        E -> E * E, E -> ( E ), E -> id }  
S=E 

E -> E + E | E * E | ( E ) | id  

EBNF
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CFG Example

• Sum grammar on integers 


• Each context-free grammar defines a context-free 
language L, which contains all sentences of terminal 
symbols derived from  repeated application of 
productions from the starting symbol. 

- Example language sentences from the Sum grammar 
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(1 + 2), 2, 4 + 21, ((3+3)+5)

S ->  E + S | E 
E -> INT | ( S )

S ->  E + S  
S -> E 
E -> INT 

E ->  ( S )

4 productions 
2 non-terminals (S,E) 

4 terminals: (, ), +, INT  
Start symbol S
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Derivations

• We can show if a sentence is part of a language by 
performing a derivation 

- Starting with the start symbol, repeatedly replace a 

non-terminal (using a production) on is right hand 
side. 


• The intermediate forms (id + E, id * (id + E) , etc.) 
always contain non-terminals. 
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       CFG 
E -> E + E 

E -> E * E  
E -> ( E )  
E ->  id  

E => E * E 
    => id + E  
    => id * (E + E) 
    => id * (id + E) 

    => id * (id + id) 
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Derivation Order

• Can choose to apply productions in any order.

- For some arbitrary strings 𝛂, and 𝛄 and a production A -> β, 

a single step of a derivation is  
       𝛂A 𝛄 => 𝛂β𝛄 (substitute β for an occurrence of A)


• Two standard orders: leftmost derivation and rightmost derivation 

-  Leftmost derivation: at each step, the leftmost non-terminal 

is replaced 


- Rightmost derivation: at each step, the rightmost non-
terminal is replaced 
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E => E * E 
    => id + E  
    => id * id

E => E * E 
    => E + id  
    => id * id
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Derivation Example 

• Derive ((34+3)+4)+9
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S ->  E + S | E 
E -> INT | ( S )

S  => E + S 
    => (S) + S 
    => (E + S) + S  
    => ((S) + S) + S  
    =>((E+S) + S) + S  
    =>((34+S) + S) + S  
    =>((34+E) + S) + S

    => ((34+3) + S) + S  
    => ((34+3) + E) + S 
    => ((34+3) + 4) + S

    => ((34+3) + 4) + E 
    => ((34+3) + 4) + 0 

Left-most derivation

S  => E + S

     => E + E

     => E + 9 
     => (S) + 9

     => (E + S) + 9 

     => (E + E) + 9 

     => (E + 4) + 9 

     => ((S) + 4) + 9 

     => ((E + S) + 4) + 9 

     => ((E + E) + 4 ) + 9 
     => ((E + 3) + 4 ) + 9  
     => ((34 + 3) + 4) + 9  
   

Right-most derivation
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Derivation to Parse Tree
• A parse tree is a  tree representation of a derivation


• Leaves of a parse tree are terminals and and internal nodes are non-terminals. 

- In-order traversal yields a sentence from the language 

- Non information about order of derivation steps (although we used left-most in 

the above example) 
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S  => E + S 

     => (S) + S 

     => (E + S) + S 

     => (34 + S) + S 

     => (34 + E) + S  
     => (34 + 5) + S

     => (34 + 5) + E 

     => (34 + 5) + 9

(34 + 5) + 9 derivation
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Parse Tree vs. Abstract Syntax Tree

• A parse tree is also known as “concrete syntax”

• An AST is similar to a parse tree but discards/abstracts 

out unnecessary information

16



MPCS 51300 - Compilers

Ambiguous Grammars

• A grammar is ambiguous if it can derive a sentence with two different parse trees 
(i.e., there’s more than one leftmost (or rightmost) derivation).  

• To see this, lets look at this grammar 


• Consider the expression: 1 + 2 * 3
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E ->  E + E | E * E | INT 
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Ambiguous Grammar

• Different parse trees will evaluate to different results. 
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How to Fix an Ambiguous Grammar?

• Usually can eliminate ambiguity by rewriting grammar to 
include additional rules and allowing recursion only on 
the right or left 


• Make * bind higher than + (i.e., * has higher precedence 
than +) 

- 1 + 2 * 3 means 1 +  (2 * 3) instead of (1 + 2) * 3

- Build grammar from highest to lowest precedence 


• Make the grammar use (right or left) recursion. In this 
case we use left-recursion -> left-associativity 
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E -> E + T      T -> T * F    F -> INT  
E -> T             T -> F

E  for Expression  
T for Term  
F for Factor
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How to Fix an Ambiguous Grammar?
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E -> E + T      T -> T * F    F -> INT  
E -> T             T -> F

E  for Expression  
T for Term  
F for Factor

At-home exercise: 
Write out the derivation 
steps for both leftmost 
and rightmost to see 
how this tree was 
produced. 
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Parsing

• A parser is a program that given a sentence constructs a 
derivation  for that sentence 

- If it can construct a derivation then it will accept the 

sentence as part of the language; otherwise error. 

- Parsers read their input from left-to-right  but may construct 

the parse tree differently. 

• Top-down parsers - construct the tree from root to leaves


- Algorithms - recursive descent, predictive parsing, LL(1)

• Bottom-down parsers - construct the tree from leaves to root  


- Algorithms - shift-reduce, LR, SLR, LALR

- LR algorithms are the most commonly used parsing 

algorithm in modern compilers. 
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Top-Down Parsing

• Construct parse tree by starting at the start symbol and 
“guess” at derivation step.

- We can use the next input token to guide in guessing 


• We can implement top-down parsing using recursive 
descent; however before we do this we must modify the 
grammar to be right recursive 


• Most top-down parsing algorithms don’t handle left 
recursion very well. 
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E -> E + T      T -> T * F    F -> INT  
E -> T             T -> F

E -> T E’         T -> F T’       F -> INT  
E’ -> + T E’     T’-> * F T’ 
E’ -> ε             T’ -> ε   

Left Recursive Grammar Right Recursive Grammar
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Demo: Recursive Decent Parser 
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E -> T E’        T -> F T’      F -> INT  
E’ -> + T E’    T’-> * F T’ 
E’ -> ε            T’ -> ε   


