
Lamont Samuels 

MPCS 51300 - Compilers

M3: Syntactical Analysis (Parsers)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit
permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials
for nonprofit educational purposes, provided this copyright notice is
preserved.

Remote Students please mute your
microphones, thank you.

MPCS 51300 - Compilers

Agenda

• Syntactical analysis overview

• Formal grammers: CFG

• Practical issues: ambiguity, left v. right recursion

• Top-down parsing

2

MPCS 51300 - Compilers

Syntactical Analysis (Parsing)
• Goal: Convert the token stream from the scanner into an an

abstract syntax tree and to verify the structure of the program is
valid.

• Input source code:

• Character Stream:

• Token Stream:

• Abstract Syntax Tree

3

if (x==y) x=45;

I f (x = = y) x = 45 ;

IF LPAREN ID(x) EQ ID(y) RPAREN ID(x) ASSIGN INT(45) SCOLON

IF

==

ID(X) ID(Y)

ASSIGN

ID(X) INT(45)

MPCS 51300 - Compilers

Syntactical Analysis (Parsing)

• Determines whether a program (or sentence) is
grammatically well-formed and identifies the function for
each component.

4

“I loaned her my pen”
Sentence

Subject:
“I”

Verb:
“loaned”

Indirect
object: her Object

Noun
phrase

possessive
adjective:

my
Noun: pen

MPCS 51300 - Compilers

What Syntactical Analysis does not do?

• Type checking, variable declarations and initializations,
function declarations, etc.

• Deferred until semantic analysis

5

var a int

b := 10

c = foo(a)

MPCS 51300 - Compilers

Specification of Language Syntax

• Goal: How can we specify the language syntax precisely
and conveniently to make it easy to parse source code?

• Lexical Analysis: We used regular expressions to
describe tokens

- Made it easy to convert them to DFAs and simulated

the DFAs to produce the tokens

• Why don’t we just use regular expressions to specify
programming language syntax?

6

MPCS 51300 - Compilers

Regular Expressions for Parsing?

• What if we wanted to add expression summation to the language

- Defines sums of the form “34+93+1234”

• Now let’s add parentheses to the language?

• But all of theses are just abbreviations so it really looks like

• Now expand again:

7

digits = [0-9]+

sum = (digits “+”)* digits

digits = [0-9]+

sum = expr “+” expr

expr = digits | “(“ sum “)”

digits = [0-9]+

expr = digits | “(“ expr “+” expr “)”

expr = digits |  
“(“ (digits | “(“ expr “+” expr “)”)

 “+” (digits | “(“ expr “+” expr “)”) “)”

Problem!! Regular expressions must  
be finite and have no recursive structure

MPCS 51300 - Compilers

Limits to Regular Expressions

• Languages are not regular and cannot be described by
regular expressions.

- DFA has only a finite number of states so adding

parenthesis would requiring some form of counting
which is not doable with regular expressions.

• We need a way to specify nesting or specifying a
recursive structure for various language construct?
Grammars!

8

MPCS 51300 - Compilers

Grammars

• A grammar is a precise, and declarative specification of syntactic
structure of programming languages

• The format (i.e., notation) of grammars is normally specified using
Extended Backus-Naur Form (EBNF)

- A set of rewriting rules (also called productions)

- A set of non-terminals (appears on the LHS of a production)
and a set of terminals (token from the alphabet)

- Can specify lists using recursion

9

non-terminals = Stmt, Expr 
terminals = if, then, else, +, *, (,), id

Block -> { Stmt-list }

StmtBlock -> Stmt | Stmt ; StmtBlock

Stmt -> if Expr then Stmt else Stmt

Expr -> Expr + Expr | Expr * Expr | (Expr) | id

Vertical bar is shorthand for
multiple productions

MPCS 51300 - Compilers

Context-Free Grammars

• Regular expressions with recursion (i.e., more expressive
than regular expressions)

• Defined by the following (T,N,P,S):

- T is set of terminals 

N is set of non-terminals 
P is set of productions (rewriting rules) 
S is the start symbol (belongs to N)

• Example:  

10

G=(T,N,P,S)
T = { +, *, (,), id } 
N = {E } 
P = { E -> E + E,  
 E -> E * E, E -> (E), E -> id }  
S=E

E -> E + E | E * E | (E) | id

EBNF

MPCS 51300 - Compilers

CFG Example

• Sum grammar on integers

• Each context-free grammar defines a context-free
language L, which contains all sentences of terminal
symbols derived from repeated application of
productions from the starting symbol.

- Example language sentences from the Sum grammar

11

(1 + 2), 2, 4 + 21, ((3+3)+5)

S -> E + S | E 
E -> INT | (S)

S -> E + S  
S -> E 
E -> INT

E -> (S)

4 productions 
2 non-terminals (S,E)

4 terminals: (,), +, INT  
Start symbol S

MPCS 51300 - Compilers

Derivations

• We can show if a sentence is part of a language by
performing a derivation

- Starting with the start symbol, repeatedly replace a

non-terminal (using a production) on is right hand
side.

• The intermediate forms (id + E, id * (id + E) , etc.)
always contain non-terminals.

12

 CFG 
E -> E + E

E -> E * E  
E -> (E)  
E -> id

E => E * E 
 => id + E  
 => id * (E + E) 
 => id * (id + E)

 => id * (id + id)

MPCS 51300 - Compilers

Derivation Order

• Can choose to apply productions in any order.

- For some arbitrary strings 𝛂, and 𝛄 and a production A -> β,

a single step of a derivation is  
 𝛂A 𝛄 => 𝛂β𝛄 (substitute β for an occurrence of A)

• Two standard orders: leftmost derivation and rightmost derivation

- Leftmost derivation: at each step, the leftmost non-terminal

is replaced

- Rightmost derivation: at each step, the rightmost non-
terminal is replaced

13

E => E * E 
 => id + E  
 => id * id

E => E * E 
 => E + id  
 => id * id

MPCS 51300 - Compilers

Derivation Example

• Derive ((34+3)+4)+9

14

S -> E + S | E 
E -> INT | (S)

S => E + S 
 => (S) + S 
 => (E + S) + S  
 => ((S) + S) + S  
 =>((E+S) + S) + S  
 =>((34+S) + S) + S  
 =>((34+E) + S) + S

 => ((34+3) + S) + S  
 => ((34+3) + E) + S 
 => ((34+3) + 4) + S

 => ((34+3) + 4) + E 
 => ((34+3) + 4) + 0

Left-most derivation

S => E + S

 => E + E

 => E + 9 
 => (S) + 9

 => (E + S) + 9

 => (E + E) + 9

 => (E + 4) + 9

 => ((S) + 4) + 9

 => ((E + S) + 4) + 9

 => ((E + E) + 4) + 9 
 => ((E + 3) + 4) + 9  
 => ((34 + 3) + 4) + 9  

Right-most derivation

MPCS 51300 - Compilers

Derivation to Parse Tree
• A parse tree is a tree representation of a derivation

• Leaves of a parse tree are terminals and and internal nodes are non-terminals.

- In-order traversal yields a sentence from the language

- Non information about order of derivation steps (although we used left-most in

the above example)

15

S => E + S

 => (S) + S

 => (E + S) + S

 => (34 + S) + S

 => (34 + E) + S  
 => (34 + 5) + S

 => (34 + 5) + E

 => (34 + 5) + 9

(34 + 5) + 9 derivation

MPCS 51300 - Compilers

Parse Tree vs. Abstract Syntax Tree

• A parse tree is also known as “concrete syntax”

• An AST is similar to a parse tree but discards/abstracts

out unnecessary information

16

MPCS 51300 - Compilers

Ambiguous Grammars

• A grammar is ambiguous if it can derive a sentence with two different parse trees
(i.e., there’s more than one leftmost (or rightmost) derivation).  

• To see this, lets look at this grammar

• Consider the expression: 1 + 2 * 3

17

E -> E + E | E * E | INT

MPCS 51300 - Compilers

Ambiguous Grammar

• Different parse trees will evaluate to different results.

18

MPCS 51300 - Compilers

How to Fix an Ambiguous Grammar?

• Usually can eliminate ambiguity by rewriting grammar to
include additional rules and allowing recursion only on
the right or left

• Make * bind higher than + (i.e., * has higher precedence
than +)

- 1 + 2 * 3 means 1 + (2 * 3) instead of (1 + 2) * 3

- Build grammar from highest to lowest precedence

• Make the grammar use (right or left) recursion. In this
case we use left-recursion -> left-associativity

19

E -> E + T T -> T * F F -> INT  
E -> T T -> F

E for Expression  
T for Term  
F for Factor

MPCS 51300 - Compilers

How to Fix an Ambiguous Grammar?

20

E -> E + T T -> T * F F -> INT  
E -> T T -> F

E for Expression  
T for Term  
F for Factor

At-home exercise:
Write out the derivation
steps for both leftmost
and rightmost to see
how this tree was
produced.

MPCS 51300 - Compilers

Parsing

• A parser is a program that given a sentence constructs a
derivation for that sentence

- If it can construct a derivation then it will accept the

sentence as part of the language; otherwise error.

- Parsers read their input from left-to-right but may construct

the parse tree differently.

• Top-down parsers - construct the tree from root to leaves

- Algorithms - recursive descent, predictive parsing, LL(1)

• Bottom-down parsers - construct the tree from leaves to root

- Algorithms - shift-reduce, LR, SLR, LALR

- LR algorithms are the most commonly used parsing

algorithm in modern compilers.

21

MPCS 51300 - Compilers

Top-Down Parsing

• Construct parse tree by starting at the start symbol and
“guess” at derivation step.

- We can use the next input token to guide in guessing

• We can implement top-down parsing using recursive
descent; however before we do this we must modify the
grammar to be right recursive

• Most top-down parsing algorithms don’t handle left
recursion very well.

22

E -> E + T T -> T * F F -> INT  
E -> T T -> F

E -> T E’ T -> F T’ F -> INT  
E’ -> + T E’ T’-> * F T’ 
E’ -> ε T’ -> ε

Left Recursive Grammar Right Recursive Grammar

MPCS 51300 - Compilers

Demo: Recursive Decent Parser

23

E -> T E’ T -> F T’ F -> INT  
E’ -> + T E’ T’-> * F T’ 
E’ -> ε T’ -> ε

